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The success of CNNs is accompanied by deep models and heavy storage
costs. For compressing CNNs, we propose an efficient and robust pruning
approach, cross-entropy pruning (CEP). Given a trained CNN model, con-
nections were divided into groups in a group-wise way according to their
corresponding output neurons. All connections with their cross-entropy
errors below a grouping threshold were then removed. A sparse model
was obtained and the number of parameters in the baseline model signif-
icantly reduced. This letter also presents a highest cross-entropy pruning
(HCEP) method that keeps a small portion of weights with the highest
CEP. This method further improves the accuracy of CEP. To validate CEP,
we conducted the experiments on low redundant networks that are hard
to compress. For the MNIST data set, CEP achieves an 0.08% accuracy
drop required by LeNet-5 benchmark with only 16% of original param-
eters. Our proposed CEP also reduces approximately 75% of the storage
cost of AlexNet on the ILSVRC 2012 data set, increasing the top-1 errorby
only 0.4% and top-5 error by only 0.2%. Compared with three existing
methods on LeNet-5, our proposed CEP and HCEP perform significantly
better than the existing methods in terms of the accuracy and stability.
Some computer vision tasks on CNNs such as object detection and style
transfer can be computed in a high-performance way using our CEP and
HCEP strategies.

1 Introduction

In recent years, deep neural networks (DNNs) have achieved great success
in many fields. Convolutional neural networks (CNNs) perform especially
well on image and video recognition, object detection, face alignment, and
image style transfer, since AlexNet-popularized CNNs won the ImageNet
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Large Scale Visual Recognition Competition (ILSVRC) in 2012 (Krizhevsky,
Sutskever, & Hinton, 2012). The recent trend is that higher accuracy can be
achieved by making a deeper network with more parameters. For exam-
ple, the Visual Geometry Group (VGG)–16 has approximately 134 million
parameters and VGG-19 148 million parameters (Simonyan & Zisserman,
2014). These high-capacity networks have high memory consumption and
low processing speed (Zou, Zheng, Miao, Mckeown, & Wang, 2017). This
makes it complicated to employ CNNs on computationally limited plat-
forms and timely applications such as augmented reality, self-driving, and
target tracking.

Various attempts have been made to compress or accelerate neural net-
work models by trained quantization (Rastegari, Ordonez, Redmon, &
Farhadi, 2016), optimized implementation (Bagherinezhad, Rastegari, &
Farhadi, 2016), decomposition (Tai et al., 2015), or pruning. Among these
methods, pruning has received widespread attention recently due to its
high compression rate and low accuracy loss. The concept of pruning was
first proposed by LeCun, Denker, and Solla (1989), inspired by the fact that
connections between biological brain neurons can be destroyed. This was
a valid method able to reduce network complexity (Luo, Wu, & Lin, 2017).
Besides, pruning with retraining has been proved to be effective in reducing
overfitting and redundancy of a network (Sun, Wang, & Tang, 2016). Even
though these two methods have demonstrated great success, there are still
several problems with network pruning. For example, how to choose prun-
ing strategies is a serious problem for different network models. In addition,
there are two further problems. First, after obtaining a well-trained dense
network, pruning and retraining layer by layer will take considerable time
and effort, especially when the initial accuracy after pruning is relatively
low. Second, different structures of multilayered compression on the same
network result in unstable performance. In other words, accuracy varies
greatly in different structures and often has to be tested for many times.

To solve the problem of network complexity, Srinivas and Babu (2015)
proposed removing redundant neurons in a systematic way, which reduces
the computational complexity of retraining. But accuracy is decreased much
more than that of baseline models. For the other problem Sun et al. (2016)
propose a novel neural correlation–based pruning criterion to ensure the
performance of moderately sparse DeepID2+ models and improve the ac-
curacy of face recognition. Han, Mao, and Dally (2015) and Han, Pool, Tran,
and Dally (2015) calculated a trade-off curve between accuracy loss and
compression rate with L1 and L2 regularization, and concluded that “the
more parameters pruned away, the less the accuracy.” However, these ar-
chitectures are feasible only for very deep neuron networks. Although good
results have been achieved on large models in these works, the performance
on small models is rarely explored.

To avoid these limitations, this letter proposes a robust cross-entropy
pruning strategy for compressing CNNs: CEP. Inspired by the optimal
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brain damage (LeCun et al., 1989) rule of “deleting connections with small
saliency,” we first group connections according to their output neurons.
Then each connection, is assumed to be eliminated for calculating the cross-
entropy error of connections. Afterward, all connections with the error
below a threshold are deleted from the dense network model by binary
pruning filters that have the same shape as weight matrices. Finally, the
sparse network is retrained layer by layer. Experimental results on the
MNIST and ILSVRC 2012 data sets demonstrate that our proposed CEP
strategy can achieve a high compression rate and low accuracy loss for deep
networks. Moreover, the method also has good performance on both initial
accuracy after pruning and stability for different compression structures,
even for low-redundant networks. These results show that the CEP strat-
egy can extract effective connection sets with high predictive accuracy.

The remainder of this letter is structured as follows. Section 2 introduces
related work about popular pruning methods for deep networks. Section
3 describes the cross-entropy pruning strategy, which is applicable to both
fully connected (FC) and convolutional layers. Four groups of experiments
on three types of networks are reported in section 4. Section 5 concludes
and notes our future work.

2 Related Work

Current DNN models suffer from heavy redundancy and overparame-
terization. For example, Denil, Shakibi, Dinh, Ranzato, and De Freitas
(2013) pointed out that a neural network could be restructured with only
a small fraction of its original parameters. Furthermore, recent research by
Wang, Xu, You, Tao, and Xu (2016) demonstrated that deletions of around
85% weights of CNN models would not affect their accuracies. Hence,
weight management for deep networks is very important, and various com-
pression methods have been proposed. Compared to other compression
methods, pruning has been proved to be effective in reducing network re-
dundancy. In this section, we describe several popular pruning methods
since the birth of pruning.

2.1 Reducing Training Error. Early pruning methods focused on reduc-
ing increased training errors. For example, LeCun et al. (1989) proposed
an optimal brain damage (OBD) pruning strategy in 1989. They calculated
the saliencies by computing the second derivatives for each parameter and
then pruned parameters with low saliency. Similarly, the optimal brain sur-
geon (OBS) strategy (Hassibi & Stork, 1992; Srinivas & Babu, 2015) added
an adjustment stage for the remaining parameters after each parameter was
pruned. Hence, there was no need to retrain or fine-tune network models in
OBS. Inspired by their work, Lebedev and Lempitsky (2016) explored prun-
ing clustered weights by grouping sparsity regularizer. However, some
complex operations (i.e., second-order derivative) needed to be calculated
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in these methods. They were not suitable for current deep networks due to
heavy computation consumption.

2.2 Magnitude-Based Pruning. In order to simplify a pruning pro-
cess, some researchers have paid attention to magnitude-based pruning
methods. A simple weight magnitude pruning method proposed by Gale,
Vestheim, Gravdahl, Fjerdingen, & Schjolberg (2013) enhanced the weight
powers method on radial basis network (RBF), for removing redundant
units. Han et al. (2015), Han, Liu et al. (2016), Han, Pool et al. (2016), and
Han, Pool et al. (2015) proposed a series of state-of-the-art methods in which
all connections with their weights less than a threshold were deleted. Quan-
tization and Huffman coding were then used to further compress model
size. A promising compression ratio with no accuracy loss can be thus
achieved. For sparse matrices after being pruned, Han, Pool et al. (2016)
proposed a dense-sparse-dense training flow with no inference overhead.
In spite of good results, the performance on smaller models that are more
suitable for mobile devices has rarely been explored.

2.3 Importance-Based Pruning. As a recent trend, various methods of
importance-based pruning have been explored too. To reduce the size of
a network model, Sabo and Yu (2008) calculated the sensitivity of neurons
and developed a cross-validation-based pruning algorithm in 2008. More
recently, Sun et al. (2016) computed a correlation between connections and
their neural activations. Moreover, by dropping 88% of connections with
low correlation, the VGG-like face recognition model achieves improved ac-
curacy. Different from weights pruning, Rueda, Grzeszick, and Fink (2017)
first grouped neurons into Maxout units and then pruned neurons by re-
moving the least active neurons sorted by a Maxout architecture. However,
the architecture lacks flexibility and universality and is feasible only for
very deep neuron networks. It is also a common fault of recent pruning
methods.

In addition, there are various effective strategies for compressing
and speeding up CNNs, including tensor decomposition (Garipov,
Podoprikhin, Novikov, & Vetrov, 2016; Novikov et al., 2015) and binary/
ternary weight networks (Hubara, Courbariaux, Soudry, & Yaniv, 2016; Li,
Zhang, & Liu, 2016). They can be brought together with pruning for further
improvement.

Much pruning work has focused on reducing the loss of prediction ac-
curacy. However, there are still many problems in existing pruning strate-
gies. Due to morbid pruning strategies, overly complex operations in a
layer-by-layer pruning process take considerable time and effort. Moreover,
the performance on smaller CNN models that is suitable for timely plat-
forms and applications is rarely examined, which leads to the universality
and stability of the existing strategies. To tackle these problems, this let-
ter focuses on both large and small network models by proposing a robust
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cross-entropy–based pruning strategy for compressing CNNs. The stabil-
ity and accuracy of our proposed CEP strategy under a variety of network
models have been validated by experiments reported in section 4.

3 Cross-Entropy Pruning

In this section, we describe our novel CEP strategy. We first describe the
concept of traditional pruning strategies: grouping, pruning of weights and
neurons, and retraining. Then we present how to prune weights by our CEP
strategy in detail. We present a cross-entropy pruning algorithm for fully
connected layers, which is also suitable for neural networks with only fully
connected layers (e.g., MLP). Finally, we generalize our method to convo-
lutional layers and CNN models.

3.1 Pruning Strategy. In weight pruning, we first build a convolutional
neural network for a given data set, and then train the network until all
of its parameters converge. Thus, the baseline dense model M0 is formed.
Next, some connections in M0 are pruned (assign to zero) by a cross-entropy
pruning filter in a layer-wise way, from the last layer to the previous layers.
After each pruning in a layer Li, a sparse model Mi is initialized by its last
model Mi−1 and retrained without updating pruned weights. Since the ini-
tial values have been trained, the whole retraining process is developed in
a finely tuned way. In this way, a series of increasingly sparse models with
fewer and fewer connections is obtained (Sun et al., 2016).

In general, the last few layers of a convolutional neural network are fully
and locally connected layers and contain most of the weights of the model,
resulting in high redundancy. In principle, weight pruning in these redun-
dant layers would not have a greater influence on performance than con-
volutional layers. Hence, connections in higher layers are supposed to be
pruned away first, and then other connections are pruned down layer by
layer. This is because the neurons between different layers are connected.
The outputs of the lower layers are used as the inputs of the higher neurons.
Furthermore, higher layers have a stronger prediction ability with more
complete features than lower layers do.

Given the total number of original weights |W |, we define the degree
of sparsity as λ(0 < λ < 1), which is quantified as pruned weights/original
weights. Hence, a total of λ|W | weights will be pruned from the baseline
model. In principle, we intend to find a sequence of weights that make
smaller contributions to the network, and the deletion of the weights will
cause the minimal impact of training errors. As shown in Figure 1, we
first train the network and obtain the dense baseline model. Second, we
divide connections into groups in a group-wise way, according to their cor-
responding output neurons. Meanwhile, the number of groups is the same
as that of output neurons. Finally, we delete a certain proportion of connec-
tions in each group according to our cross entropy pruning strategy and
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Figure 1: Pruning and retraining flow. The connections are grouped and
pruned. Dotted line: pruned connections; dotted circle: pruned neurons; red
line: input connections of pruned neurons.

retrain the sparse network layer by layer. In particular, if all the output con-
nections of a neuron are pruned, the neuron and all its input connections are
also pruned. In the next section, we describe in detail how to prune weights.

3.2 Weight Pruning. The key step of a neural network backpropaga-
tion (BP) algorithm (the key of the gradient descent algorithm) is to cal-
culate the sensitivity of neurons. The difference among BP algorithms that
use different loss functions and activation functions is dependent mainly
on their sensitivity. Cross-entropy error (CEE), as a loss function, is widely
used in many neural network models. CEE reveals the difference between
the output and the target value of a network. Such a difference can be used
to calculate the sensitivity of each neuron (Zhao, Chen, Yang, Hu, & Obai-
dat, 2016; Li, Zhao, Huang, & Gong, 2014). Motivated by this, we propose
a cross-entropy pruning strategy assuming each weight is pruned, respec-
tively, and then calculate CEE as losses for the trained baseline model. Fi-
nally, weights with the least CEE will be pruned.

3.2.1 Cross-Entropy of Pruning Each Weight. First, we consider fully
and locally connected layers, including more connections and nonshared
weights. Weights and connections have one-to-one correspondence in these
layers. Given a fully connected layer Li with i input neurons, its input is
x ∈ R

i×n, where n = 1, 2, . . . , N denotes the number of input data. Similarly,
the next layer Li+1 with h input neurons is given. Hence, according to the
forward propagation algorithm, the inactive value of the output neuron neth

(input neuron of Li) is

neth = sum(W, x) =
∑

i ∈ num_i

Wh,ixi + bh, (3.1)
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where Wh,i ∈ R
h×i denotes the weight matrix between Li and Li+1, and num_i

the number of input neurons. The output value is activated by the activation
function, such as Sigmod, tanh, ReLU and Softmax. Consider the Softmax
function, for example; if its general form is given in equation 3.2, the acti-
vated neuron output value yh is obtained in equation 3.3.

yc = ς (ac) = exp(ac)∑
c′ exp(ac′ )

, (3.2)

yh = f (neth) = ς (neth), (3.3)

where c′ denotes all parameters except for c. For each connection, it is then
assumed to be pruned away, and the activation value of the corresponding
neurons Ŷhi after pruning is calculated. Hence, the calculation mode of Ŷhi

is formulated as

Ŷhi = ς

⎛
⎝ ∑

i ∈ num_i

W ′
h,ixi + bh

⎞
⎠ ,∀h ∈ {1, 2, . . . , num_h}. (3.4)

It is easy to see that the difference between yh and Ŷhi is whether it is to
be pruned. On the basis of W , the weight of the connection that is assumed
to be pruned, W ′

hi, is set to zero. Since each connection is assumed to prune,
the shapes of Ŷ and W are the same. After obtaining yh and Ŷhi, we calculate
the cross-entropy of original output and pruned output (Huang, Li, Weng,
& Lee, 2014). According to the maximum likelihood estimation, the average
negative cross-entropy is

Chi = avg
n

(−sum(W ′x)) = avg
n

⎛
⎝−

∑
h ∈ num_h

yh ln Ŷhi

⎞
⎠ , (3.5)

where Chi denotes the cross-entropy of pruning each weight. It serves as
a major benchmark for pruning. The Chi has only a positive value, which
is helpful for the output of the corresponding neuron. Furthermore, the
magnitude of Chi represents the degree of its influence on the output of the
network. Hence, from all Chi for i = 1, 2, . . . , num_i, all positive values are
sorted in descending order, denoted as desChi for i = 1, 2, . . . , num_i. Ac-
cording to the degree of sparsity, desChi is sampled into two parts based
on coefficient ranks, having λ ∗ num_i and (1 − λ) ∗ num_i numbers, respec-
tively. Specifically, considering weights with lower values, which are kept,
and complementary to weights with higher values, we set L denoting the
proportion of weights with lower Chi values. Then desChi can be divided into
three parts: λ ∗ num_i, μ ∗ num_i, and (1 − λ − μ) ∗ num_i. The total number
of pruned weights is λ ∗ num_i, which depends on the degree of sparsity λ.
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Figure 2: Pruning process for weight matrices. In pruning filters, 0 = kept (blue)
and 1 = pruned (pink). Pruned weights are set to 0.

3.2.2 Pruning Filter. A pruning filter is used to identify the weights that
are pruned and not being updated (Sari & Xiao, 2011). Considering a mul-
tilayer perceptron with n fully and locally connected layers, we define
a pruning filter Fm ∈ R

km×im , which has the same shape as weight matrix
Wm ∈ R

km×im . As shown in Figure 2, the filter matrices are filled with 0 and 1
to indicate that the weights are kept or pruned in the current layer. For each
output neuron, all the weights connected to the neuron with cross-entropy
below a threshold will be pruned, which will save n

∑
m λhmim operations

in forward propagation and backpropagation, respectively.

3.2.3 Backpropagation. The BP algorithm is based on the gradient descent
strategy, which updates the parameters in the negative gradient direction
of the target (Li, Kadav, Durdanovic, Samet, & Graf, 2016). Once a weight is
pruned, it will not be updated in the BP process. This depends on the value
of pruning filters Fm. Given the error En and learning rate η, the weights are
updated as

Whi = Whi + �Whi, (3.6)

�Whi =

⎧⎪⎨
⎪⎩

−η
∂En

∂Whi
Fhi = 0

0 Fhi = 1

. (3.7)

Similar to forward propagation, the cross-entropy pruning in the BP pro-
cess will save n

∑
m λhmim operations. In the training process, the number of

total operations 2n
∑

m λhmim is saved. The same shape as weight matrices
is the reason that pruning filters consume a large amount of storage space.
However, it exists only in the training stage and will be removed in the final
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model. Hence, the running speed and size of the model will not be affected
by pruning filters.

3.2.4 CEP Algorithm for FC Layers. The cross-entropy error matrix C
has the same shape as that of weight matrix W . In addition, the assumed
pruned weights need to be marked in the process of calculating cross-
entropy. Hence, it is necessary to design an iteration structure with three
loops, where a new parameter t is used to mark pruned weights. Based
on the forward propagation algorithm, the CEP algorithm is outlined in
algorithm 1.

Algorithm 1 mainly describes the calculation process of cross-entropy for
each connection in an FC layer. Steps 1 and 4 go through all the connections
in one layer, where i and j are the number of neurons in the last layer and
the next layer, respectively. Step 3 marks the connection that is assumed to
be pruned. Steps 5 to 9 are designed to compute the cross-entropy of the
original output and pruned output. Steps 13 to 15 are to be pruned accord-
ing to the magnitude of the cross-entropy of connections in a group-wise
way.

After the algorithm is executed, we obtain cross entropy-error matrix C
and pruned weight matrix P. Furthermore, the size of the baseline model
has already been reduced. This is because the partial values in the matrix
have been replaced by binary values, which are much smaller than double-
format values.

3.3 Convolutional Layer Pruning. In convolutional layers, image data
are transmitted in a local sensing way, and weights in each convolution
kernel are shared by local images. In convolutional layers, a 3D convolu-
tion kernel K ∈ R

d×k×k consists of the number of m 2D kernel K ∈ R
k×k (e.g.,

5 × 5), where m is the channel number of the convolution kernel. Suppose
i = k × k denoting the size of the input feature map. Similar to the defini-
tion in section 3.2, for each channel, the cross-entropy of weights in convo-
lutional layer chi is calculated as follows:

chim =
num_d∑

d=1

∣∣∣∣∣avg
n

(
−

num_h∑
h=1

yhd ln Ŷhid

)∣∣∣∣∣
=

num_d∑
d=1

∣∣∣∣∣avg
n

(
−

num_h∑
h=1

yhd ln
exp(sumc(W ′, x))∑
c′ exp(sumc′ (W ′, x))

)∣∣∣∣∣. (3.8)

Compared to chi in FC layers, each parameter in equation 3.8 adds a new
dimension m, where d = 1, 2, . . . , num_d. Moreover, the total number of the
saved operations is also related to d. The rank des(chim) and pruning filter
F are created to delete the connections that are similar to those created in
fully connected layers.
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3.4 Why Cross-Entropy-Based Pruning Works. When using the cross-
entropy loss function of neural networks, we can estimate the importance of
each connection. We presented the specific formulas in the previous section.
But there remain questions of how and why cross-entropy-based pruning
works.

To answer these questions, we start with considering the activation func-
tion further. Assuming Softmax as an activation function, we rewrite the
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cross-entropy in equation 3.9 as equations 3.2 and 3.4:

−
∑

h ∈ num_h

yh ln Ŷhi = −
∑

h ∈ num_h

yh ln
exp(sumc(W ′, x))∑
c′ exp(sumc′ (W ′, x))

= −
⎛
⎝ ∑

h ∈ num_h

yhsumc(W ′, x)

⎞
⎠ − ln

(∑
c′

exp(sumc′ (W ′, x))

)

=

⎛
⎜⎜⎜⎜⎝

ln(1 +
∑

c′
c′ �=l

exp(sumc′ (W ′, x) − suml (W ′, x)))

−
∑

h
h �=l

yh(sumc(W ′, x) − suml (W ′, x))

⎞
⎟⎟⎟⎟⎠ , (3.9)

where l is the index of maxc sumc(W ′, x). By using the activation func-
tion, the cross-entropy formula can effectively avoid numerical overflow
(LeCun, Bottou, Bengio, & Haffner, 1998). To examine the modified cross-
entropy, we calculate the sensitivity of the output neurons as derivative:

∂

∂sumc(W ′, x)

⎛
⎝−

⎛
⎝ ∑

h ∈ num_h

yhsumc(W ′, x)

⎞
⎠ − ln

(∑
c′

exp(sumc′ (W ′, x))

)⎞
⎠

= −(yh − exp(sumc(W ′, x))∑
c′ exp(sumc′ (W ′, x))

) = −(yh − Ŷhi). (3.10)

Equation 3.10 is simple and intuitive. Dramatically, after the target value
yh is vectorized, the sensitivity of the output neuron is the difference be-
tween its activation value Ŷhi and the target value yh, which is the same
as that of the mean squared error (MSE). With the sensitivity of the output
neurons, the updated value of each layer �W can be calculated according to
the chain rule. The result is that MSE and CEE are similar when we update
multilayer weights.

In addition to improving MSE and speeding up convergence, cross-
entropy can also measure the correlation between two variables, PL(si|xt )
and P(si|xt ). Then we will analyze cross-entropy-based pruning from the
perspective of correlation. Generally the cross-entropy cost function in neu-
ral networks is formalized as

C = −
c∑

i=1

PL(si|xt ) log P(si|xt )

PL(si|xt ) =
{

1, label = i

0, else
. (3.11)
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Differing from other correlation analysis methods (e.g., canonical
correlation analysis), which have both positive and negative correlations,
cross-entropy analysis has only positive correlations in neural networks. In
equation 3.11, all summed items are nonnegative. This is because P(si|xt ) ∈
(0, 1) is a neuron output value. Hence, after taking a negative value of the
sum, the value of cross-entropy C is definitely positive. As a result, the cor-
relation coefficients of all connections change in the same direction, which
is more suitable for pruning operations and more easily processed by a
computer.

In this letter, our consideration of cross-entropy comes from likelihood.
In probability science, likelihood is a measurement criterion for the differ-
ence between two distributions. This criterion is more direct, and the greater
the likelihood, the closer the two distributions are. Since all data are inde-
pendently and identically distributed, the likelihood of all data can be de-
fined as the product of the likelihood of all data points:

L(Y, Ŷ) =
∏

h ∈ num_h

L(yh, ln Ŷhi). (3.12)

For equation 3.12, the maximum likelihood estimation method is used
to calculate the optimal parameters. Obviously the maximum of the likeli-
hood function should be equal to that of the logarithmic likelihood function,
and then a negative of the value is equal to the minimum of the function.
According to equation 3.11, the value of yh is 1 or 0. Hence, the likelihood
function is rewritten as

− ln L(Y, Ŷ) = −
∑

h ∈ num_h

ln L(yh, ln Ŷhi) = −
∑

h ∈ num_h

yh ln Ŷhi. (3.13)

In this way, we obtain the cross-entropy function used for pruning.
Meanwhile, this result also proves the validity of cross-entropy to measure
the difference between probability distributions.

Inspired by the OBD rule of deleting connections with small saliency,
we design CEP based on the idea of minimal impact on the accuracy of the
baseline model. After each connection is assumed to be pruned, the cor-
responding weight Whi in the weight matrix is set to zero. Afterward, the
cross-entropy of the assumed output and baseline output is considered the
saliency of the connection on the layer.

In general, if some connections are less important, their cross-entropy is
relatively small. Therefore, a smaller cross-entropy of Whi means that the
connection is less useful in this layer, and its removal will have the smallest
effect on the accuracy; thus, it can be deleted. Meanwhile, pruning and re-
training layer by layer ensure that every pruned connection is the optimal
choice for the current layer.
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The similarity in their updating weights between CEE and MSE has been
explained. With the correlation criterion as the error function, CEP pruned
networks have achieved the lower initial global error with the higher initial
accuracy. The convergence speed of the sparse network is thus accelerated,
and the computation cost of retraining is reduced. These advantages of our
CEP will be further validated in our experiments.

4 Experiments

We evaluate the performance of our CEP on three tasks against different
types of networks: MLP (multilayer perceptron) on the MNIST data set,
LeNet5 on the MNIST data set and AlexNet on the ImageNet (ILSVRC 2012)
data set. Unlike VGG and ResNet, which are highly redundant, they are of-
ten used to demonstrate network compression. Our three selected networks
contain fewer parameters with low redundancy. In principle, it is harder to
compress low-redundancy networks than high-redundancy networks with
high capacity. Moreover, a wide range of compression with little accuracy
loss is challenging in low-redundancy networks. This is because the per-
centage of useless connections is small in these networks.

In order to compress more pervasive and more practical networks for
applications, we first evaluate the astringency, accuracy, and compression
rate of our CEP on MLP, which contains only fully connected layers. We
then examine the effectiveness of CEP on LeNet5 and AlexNet, which are
typical models of low-redundancy networks, with our focus on CNNs. Fi-
nally, we explore the pruning strategy of keeping weights with small CEE
and compare our strategies with other pruning strategies.

4.1 Performance Evaluation on MLP. MLP on the MNIST data set with
only one hidden layer is our baseline model. The MNIST handwritten dig-
its data set has centered input images of 28 × 28 pixels and 10 output cat-
egories. Hence, to keep the redundancy of the network low, we design the
network structure as a 784-dimensional input layer, a 20-dimensional fully
connected hidden layer, and a 10-dimensional output layer. When training
the MLP model, we do not use many tricks, such as Dropout, Adagrad, and
ReLU. In order to facilitate the implementation of CEP, we train the network
by using Sigmod as the activation function, cross-entropy error as the loss
function, and gradient descent as the BP algorithm. In addition, the learn-
ing rate η is set to 0.0001 for the training process. Finally, the accuracy of
baseline MLP model converges to around 0.9737.

In addition to the input layer, the network has two fully connected layers:
the hidden layer is named L1 and the output layer L2. The total number of
parameters in the network is around 16,000, which is even fewer than the
number of parameters in a convolutional layer of VGG-16. As a result, it is
difficult to achieve a high compression rate with little accuracy loss on the
network using only network pruning. Still, we intend to fully evaluate the
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Table 1: Accuracy, Compression Rate, and Kept Parameters for Sparsified MLP
with Various Pruning Structures.

Structure Accuracy Compression Rate Kept Parameters

Baseline model 0.9737 1 15,910
25%_L1/25%_L2 0.9731 0.7505 11,940
25%_L1/35%_L2 0.9727 0.7493 11,920
30%_L1/25%_L2 0.9725 0.7012 11,156
30%_L1/35%_L2 0.9720 0.7000 11,136
35%_L1/25%_L2 0.9717 0.6519 10,372
35%_L1/35%_L2 0.9698 0.6507 10,352
40%_L1/40%_L2 0.9641 0.6008 9558

performance of our CEP in a low-redundancy network (e.g., MLP) and then
generalize it to the convolutional neural network.

In the experiments, we use fractions (e.g., 0.25, 0.30, 0.35) of sparsity de-
gree λ to evaluate the performance under different compression rates. We
gradually reduce the compression rate and pruned weights according to λ

layer by layer; then sparsified models M0, M1, . . . , Mi are trained until they
converge.

As shown in Table 1, with the change of pruning structure and the in-
crease in pruned parameters, the prediction accuracy decreases gradually.
The parameters in the table (the last column of table) are the total num-
ber of trainable parameters, including weights and biases. When pruning
structures are dramatically increased to 40% L1/40% L2 (the last row of ta-
ble), the accuracy is further reduced to 0.9641, nearly 1% lower on the base-
line model. Therefore, in the experiments, we do not compress the original
model any further.

It can be seen from the balance between the accuracy and compression
rate that our CEP strategy on MLP can still maintain a lower accuracy loss
even if the compression rate reaches around 70%. Unlike very deep neural
networks that have been highly compressed, our baseline MLP model has
only three layers with around 16,000 parameters. It is found that parameters
in these low-redundancy networks cannot be significantly reduced without
degrading accuracy.

To evaluate the performance of different pruning strategies on the model,
we compare our CEP strategy with the correlation-based and magnitude-
based pruning strategies. The comparison is conducted on the MLP dense
model, with pruning 25% weights and 30% weights in both L1 and L2 fully
connected layers. We sequentially prune the L2 and L1 layers and retrain
the network by means of batch gradient descent algorithm. Using the three
strategies, we take 28×28 square input of 60,000 MNIST handwritten im-
ages. Given that the learning rate is 0.0001 for retraining the L1 layer, we
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Figure 3: The accuracy curve of correlation, magnitude, and CEP, with (a)
25%_L1/25%_L2 and (b) 30%_L1/30%_L2 pruning structures and 0.0001 learn-
ing rate. The straight black line indicates the accuracy of baseline dense model.

train the three sparse models in a fixed epoch and plot the accuracy curve
of three strategies in Figure 3.

As shown in Figure 3, all of the three sparse networks have converged
when the training reaches 750 epochs. Our CEP strategy achieves the best
performance for pruning layers L1 and L2, with 0.9731 accuracy, which is
only about a 0.6% loss from the baseline model. Although the correlation-
based strategy achieves almost the same accuracy as ours, its initial accu-
racy and convergence rate are not as good as our CEP. The obvious reason is
that our CEP strategy selects the pruned weights that have the least impact
on the prediction accuracy. Compared to the other two strategies, our strat-
egy has the fastest convergence rate with the higher initial and prediction
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Table 2: Accuracy, Compression Rate, and Pruned Connections when the Prun-
ing Structure of Layers f1 and f2 Changes in the LeNet-5 Baseline Model.

Structure Accuracy Compression Rate Pruned Connections

Baseline model 0.9919 1 0
50%f2 0.9912 0.9199 4800
75%f2 0.9917 0.8799 7200
50%f2_75%f1 0.9909 0.3195 40,800
75%f2_75%f1 0.9915 0.2795 43,200
75%f2_90%f1 0.9911 0.1594 50,400

Note: The number of connections is equal to weights in fully connected
layers.

accuracies. Hence, the results of our experiment have sufficiently demon-
strated the effectiveness of our CEP strategy.

4.2 LeNet-5 on MNIST. With promising accuracy and compression per-
formances on MLP, we then implement our CEP strategy on a larger CNN:
LeNet-5 on the MNIST data set. LeNet-5 is a convolutional neural network
designed 1998 (LeCun et al., 1998), which contains two fully connected lay-
ers and two convolutional layers, with about 99.2% accuracy on the MNIST
data set. For convenience, the higher fully connected layer is named f2 and
the lower is named f1. In the experiment, we prune as many weights as
possible in the two fully connected layers, while the bottom convolutional
layers with fewer parameters are left untouched. Similar to CEP on MLP, the
experiment is conducted on group-wise pruning and layer-by-layer train-
ing strategy.

It can be seen from Table 2 that LeNet-5 can be compressed to 15.94%
with 0.08% accuracy reduction, pruning only on fully connected layers. Fur-
thermore, approximately 50,000 connections in fully connected layers are
deleted from the baseline model finally. One interesting result is that with
the reduction of the compression rate, accuracy is sometimes improved,
which is because redundancy and overfitting still exist in neural networks
with higher compression rates. Once a good initialization is trained, prun-
ing and retraining can improve the generalization of the network.

4.3 AlexNet on ILSVRC 2012. We further examine the performance
of CEP on the ILSVRC 2012 data set, which contains 1.2 million train-
ing data and 50,000 test data. We use AlexNet implemented by Tensor-
flow as the baseline dense model, which is a convolutional neural network
and achieves top-1 error of 0.4292 and top-5 error of 0.1998. There are
five convolutional layers and three fully connected layers in AlexNet. For
convenience, the three fully connected layers are named fc8, fc7, and fc6,
from higher to lower. Similar to the implementation on LeNet-5, we leave
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Table 3: Performances of Our CEP on AlexNet with Various Pruning Structures,
including Top-1 Error, Top-5 Error, Compression Rate, and Number of Pruned
Connections.

Structure Top-1 Error Top-5 Error Compression Rate P Connections

Baseline model 0.4292 0.1998 1 0
75%fc8_75%fc7 0.4312 0.2009 0.7432 15,654K
75%fc8_90%fc7 0.4319 0.1989 0.7019 18,171K
75%fc8_90%fc7_75%fc6 0.4329 0.1995 0.2374 46,483K
75%fc8_90%fc7_90%fc6 0.4337 0.2019 0.1445 52,145K

convolutional layers untouched. In our experiments, we calculate both the
top-1 error and top-5 error of pruned sparse network models. The experi-
mental results are shown in Table 3.

As shown in Table 3, with the reduction of the compression rate, the vari-
ation trends of top-1 error and top-5 error are even better than the top-5
error of the baseline model in rows 4 and 5. After pruning all three fully
connected layers, more than 52 million connections are deleted from the
baseline dense model. Furthermore, it is still a 0.4337 top-1 error rate with
only about 14% of the connections. It is found that parameters in fully con-
nected layer fc6 are the most redundant, because the pruned connections
are several times that of the other two layers and the error rates do not rise
significantly in the last two rows of Table 3.

4.4 Keep Weights with the Highest CEE. A selection of pruning strate-
gies is one of the most important factors in pruning performance. The key
concept of our CEP strategy considers pruning connections with the small-
est CEE. In reality, keeping partial connections with the smallest weights or
correlations to connected neurons is helpful for the sparse model (Sun et al.,
2016; Han et al., 2015). Motivated by this, we have explored how to keep a
majority of low CEE weights as well as a small number of weights with the
highest CEE.

In the experiment, the new method is HCEP and μ is set to 5%. For ex-
ample, 50% weight pruning in a layer denotes that we deleted 45% of the
lowest CEE connections and 5% of the highest CEE connections. Moreover,
we compare the novel HCEP strategy with OBD, magnitude pruning, cor-
relation pruning, and our CEP strategy on LeNet-5 with the MNIST data
set. All parameters in the LeNet-5 network are the same as those in our ex-
periments in section 4.2. On the basis of our experimental results, we com-
pare in Table 4 the performances on three pruning structures: 50%f2_75%f1,
75%f2_75%f1, and 75%f2_90%f1.

In the last two rows of Table 4, we verify that keeping a small portion of
weights with the highest CEE might improve accuracy. When the pruning
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Table 4: Comparison Between our CEP, HCEP, and Other Pruning Strategies on
LeNet-5.

Pruning Structure OBD Magnitude Correlation CEP HCEP (5%)

50%f2_75%f1 99.12 98.65 99.03 99.09 99.10
75%f2_75%f1 99.01 98.63 99.13 99.15 99.11
75%f2_90%f1 98.97 98.43 98.87 99.11 99.13

structure comes to 50%f2_75%f1 and 75%f2_90%f1, the accuracy of HCEP is
slightly higher than that of CEP. However, this is not always true and needs
to be finely tuned according to the pruning structure.

Although OBD is better than the other four methods in the 50%f2_75%f1
pruning structure, its performance declines significantly when the number
of pruned connections increases in f2 and f1 layers, lacking stability. In con-
trast, compared to other methods, our CEP and HCEP achieve higher ac-
curacy and better stability (with accuracy 0.9912 ± 0.0003 on the MNIST).
Our results also show the possibility of improving the accuracy by keeping
some weights with extremum value and pruning them.

4.5 Method Comparisons. Besides the above comparison, we take
data-free (Srinivas & Babu, 2015), SSL (Wen, Wu, Wang, Chen, & Li, 2016),
magnitude (Han et al., 2015), correlation (Sun et al., 2016), and OBD (LeCun
et al., 1989) methods as examples and compare top-1 error, compression
rate, accuracy degradation, compressed size, as well as the retraining cost of
AlexNet on the ILSVRC 2012 data set with our CEP and HCEP. For network
compression methods, compression rate and accuracy are the most impor-
tant criteria to verify the quality of the method. Compressed size and re-
training cost are also key benchmark metrics for pruning. For each method,
considering the balance between the accuracy and compression rate, we
compare the best experimental results that have been confirmed by previ-
ous work. The compared results of AlexNet on the ILSVRC 2012 data set in
Table 5 come from the experimental section of the corresponding papers.

To make the comparisons in a more comprehensive and convincing way,
for each method, we recover the best results reported in the correspond-
ing papers as much as possible: data free with fractions (0.66, 0.94, 0.83),
magnitude with fractions (0.91, 0.91, 0.75), correlation with fractions (0.75,
0.75, 0.50), OBD with fractions (0.75, 0.75, 0.75), and our CEP and HCEP
with fractions (0.75, 0.90, 0.90) for three fully connected layers. In the exper-
iment, HCEP deletes 5% of connections with the highest CEE, and it prunes
the same number of connections with CEP. Therefore, the compression rate
and compressed size of CEP and HCEP methods are the same in Table 5.

Multiply-and-accumulate (MAC) operations in fully connected and con-
volutional layers occupy over 99% of total operations in DNNs. Therefore,
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Table 5: Key Benchmark Metrics of Our CEP and HCEP Versus Other Main-
stream Methods of AlexNet Trained on ILSVRC 2012.

Compressed Retraining
Top-1 Compression Accuracy Size Cost

Method Error Rate Degradation (in millions) (×1012 MACs)

Data free 0.4440 0.6511 0.0148 39.72 ≈0
SSL 0.4467 0.9748 0.0175 59.46 3.67
Magnitude 0.4349 0.1303 0.0057 7.95 6.15
Correlation 0.4483 0.2910 0.0191 17.75 6.31
OBD 0.4402 0.2746 0.0110 16.75 5.50
CEP 0.4337 0.1445 0.0045 8.81 3.46
HCEP (5%) 0.4352 0.1445 0.0060 8.81 3.48

we use this benchmark to measure the consumption of retraining. In gen-
eral, there are about 3.7 × 108 MACs operations in the process of forward
propagation of AlexNet. These operations are mainly concentrated on the
calculation of convolutional layers. In addition, the time-consuming and
MAC operation of backward propagation are roughly three times that of
forward propagation. Due to the different scales of the data set, the retrain-
ing costs reported in Table 5 are the MACs operations of only one image
with 227 × 227 pixel.

Since the parameters in fully connected layers account for over 95% of
total parameters in AlexNet, the pruning fractions of the fully connected
layers will directly affect the compression rate and compressed size. How-
ever, SSL aims to regularize the filter and channel in convolutional layers for
speeding up DNNs, which leads to a rather high compression rate. Further-
more, sparse convolution layers reduce the amount of computation, thus
accelerating the retraining process.

As a state-of-the-art pruning strategy, magnitude-based pruning keeps
ahead in both the top-1 error and compression rate. Although a good com-
pression rate is achieved, its error rate is much worse than the best result
reported in other work when pruning is used only in FC layers. Mean-
while, the initial accuracy after pruning is relatively low, which leads to
slow convergence in layer-by-layer retraining. Therefore, MACs operations
are rather huge for only one image. And that is also the reason the MACs
operations of correlation-based pruning are huge. In contrast, the data-free
method adds an adjustment stage for remaining parameters after each neu-
ron is pruned. Hence, there is no need for retraining or fine-tuning network
models in the method.

Compared with other methods, our CEP and HCEP perform first-class
under multiple benchmarks. We have achieved around 85% group-wise
sparsity for FC6-FC8 (the best-pruned network is reported in Table 5). By
a reasonable compression structure, experimental results validate that our
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proposed methods have good robustness and extensibility. With an accept-
able accuracy degradation for the baseline model with about 0.43 top-1 er-
ror, our methods achieve a reasonable compression on AlexNet.

5 Conclusion

Currently CNNs are limited by huge network models with high inference
costs. In this letter, we have presented CEP, a pruning method for reducing
the number of parameters in CNNs. Our proposed method calculates the
expected cross-entropy error for each connection and uses filters to prune
weights in a group-wise way. With little accuracy loss, CEP has achieved
around a 0.16 compression rate on LeNet-5 (on MNIST) and 0.14 on AlexNet
(on ILSVRC 2012). Furthermore, we have explored keeping a small portion
of weights with the highest CEE. The comparison experiments show that
our methods have higher accuracy and stability under different pruning
structures. As such, our method facilitates the possible implementation of
CNNs on computationally limited platforms and timely applications.

In the future, we would like to combine our CEP strategy with tensoriz-
ing neural networks for further acceleration. An alternative for error-based
weight selection strategies is also expected to be explored.
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