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ABSTRACT

In recent years, hashing based cross-modal retrieval methods
have attracted considerable attention for the high retrieval ef-
ficiency and low storage cost. However, most of the existing
methods neglect the high-order relationship among data sam-
ples. In addition, most of them can only deal with two modal-
ities, e.g., image and text, without discussing the scenario
of multiple modalities. To address these issues, in this pa-
per, we propose a novel cross-modal hashing method, named
Hypergraph Based Discrete Matrix Factorization Hashing
(HDMFH), for multimodal retrieval. Different from most
previous approaches, our method based on hypergraph reg-
ularization and matrix factorization can handle the cross-
modal retrieval of more than two modalities, which is known
as multimodal retrieval. Extensive experiments demonstrate
that HDMFH outperforms the state-of-the-art cross-modal
hashing methods.

Index Terms— Cross-modal retrieval, multimodal re-
trieval, hashing, hypergraph learning

1. INTRODUCTION

Cross-modal retrieval has attracted considerable attention due
to the massive growth of multimedia data such as text, images,
audios, and videos [1, 2, 3, 4]. Taking text and image modal-
ities as an example, cross-modal retrieval uses one modality
(e.g., texts) as a query to search another modality (e.g., im-
ages) that shares the similar semantics with the query item. It
has been widely investigated and applied in computer vision
[5], text mining [6], and information retrieval [7], and how to
effectively perform cross-modal similarity search has become
a hot research topic.

Recently, the hashing-based cross-modal retrieval meth-
ods have been widely studied due to the low storage over-
head and fast query speed [8, 9, 10, 11]. Most of the previous
cross-modal hashing methods can be briefly divided into two
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Fig. 1. Framework of the proposed HDMFH.

categories: unsupervised and supervised methods. The unsu-
pervised methods learn the hashing function and the binary
codes by maximizing the intra- and inter-modality similar-
ity of training data without supervised labels. Representative
examples include Inter-Media Hashing (IMH) [12], Collec-
tive Matrix Factorization Hashing (CMFH) [10], and Unsu-
pervised Deep Cross-Modal Hashing (UDCMH) [13]. While,
the supervised ones enhance the common semantic relation-
ship by utilizing the label information of training data. Typ-
ical supervised methods include Cross-View Hashing (CVH)
[14], Supervised Matrix Factorization Hashing (SMFH) [11],
Semantic Preserved Hashing (SePH) [15], and Cross-Modal
Discrete Hashing (CMDH) [9].

Although great progress has been made in recent years,
most of the existing cross-modal hashing methods [7, 11,
15, 16] ignore the high-order relationship among data sam-
ples. They only consider the pairwise relationship between
two samples, which can not fully describe the semantics of
the modality, thus decreasing the discriminative property of
representations. In addition, most of them can handle the
cross-modal retrieval with only two modalities. The scenario
of cross-modal retrieval with more than two modalities, i.e.
multimodal retrieval has not yet been investigated well. Sev-
eral methods such as Fusion Similarity Hashing (FSH) [7] and
Scalable Discrete Matrix Factorization Hashing (SCRATCH)
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[17] claim that they can be easily extended to multimodal sce-
nario. However, none of them have discussed the difference
and validated via experiments.

To address the aforementioned challenges, in this paper,
we present a novel cross-modal hashing method for multi-
modal retrieval, namely, Hypergraph Based Discrete Matrix
Factorization Hashing (HDMFH). Fig. 1 depicts the work-
ing flow of the proposed HDMFH. The goal of HDMFH is
to push multimodal data to a common semantic space and to
maintain the high-order relationship among samples in each
modality simultaneously. Because hypergraph can model the
high-order relationship among instances, we employ a hy-
pergraph regularization term for each modality to capture the
high-order relationship of samples, which can help enforce
the discriminative property of learned common semantic rep-
resentations. In addition, we use matrix factorization and
supervised semantic labels to bridge the semantic gap across
different modalities. Such connection without constraints of
any two modalities makes our method scalable to multiple
modalities. Moreover, HDMFH is a two-step hashing method
that consists of unified binary codes learning and hashing
function learning resulting in a high degree of flexibility of
our method. A large number of experiments on four widely
used datasets show that our method is superior to the state-
of-the-art cross-modal hashing methods in both cross-modal
retrieval and multimodal retrieval.

The main contributions are summarized as follows:

• We propose a novel hypergraph based discrete matrix
factorization hashing method for multimodal retrieval,
which can efficiently capture the correlations across
different modalities to handle cross-modal retrieval
with more than two modalities.

• Different from the previous cross-modal hashing meth-
ods, we employ hypergraph learning to model the high-
order relationship among different samples in each
modality, which further improves the discriminative
property of learned common sematic representations.

• Extensive experiments are conducted on three cross-
modal and one multimodal dataset. The results demon-
strate that HDMFH is superior to the state-of-the-art
cross-modal hashing methods.

The rest of this paper is organized as follows. Section
2 introduces the details of our proposed HDMFH. Section 3
includes the experiments of cross-modal retrieval conducted
on four datasets with settings, results, and analysis. Finally,
the conclusion is presented in Section 4.

2. PROPOSED METHOD

2.1. Notations

In this paper, we use bold uppercase letters to represent ma-
trices and bold lowercase letters to represent vectors. Given

m different modalities data X(t) = {x(t)1 , x(t)
2 , · · · , x(t)n } ∈

Rdt×n, t = 1, 2, · · · ,m, where dt represents the feature
space dimensionality corresponding to the t-th modality, and
n is the number of training instances. Without loss of gen-
erality, we assume that the data are zero-centered in each
modality, i.e.,

∑n
i=1 x(t)i = 0. Let Y ∈ {0, 1}c×n be the label

matrix, where c is the number of classes and Yki = 1 if xi
belongs to class k and 0 otherwise. B ∈ {−1, 1}r×n is the
to-be-learned binary codes matrix, where r is the length of the
hash codes. ‖·‖F denotes the Frobenius norm, Tr(·) is the
trace operation, and sgn(·) is an element-wise sign function
defined as follows,

sgn(x) =
{

1 x > 0;
−1 x ≤ 0.

(1)

2.2. Objective Function of HDMFH

Latent Semantic Representation Learning. In order to ob-
tain the latent semantic representation of different modali-
ties, here we borrow the idea of collective matrix factorization
[18]. As for multimodal data, they are different descriptions
of the same objects. Hence, they usually share the same com-
mon semantics. Thus, collective matrix factorization can be
used to extract the latent semantic representation, which can
be stated as follows,

min
Ut,V

(

m∑
t=1

λt

∥∥∥X(t) − UtV
∥∥∥2
F
+ γ ‖Ut‖2F ) + γ ‖V‖2F , (2)

where V ∈ Rr×n is the common latent semantic representa-
tion of different modalities, Ut ∈ Rdt×r is the basis matrix,
λt and γ are the balance parameters, where

∑m
t=1λt = 1.

Hypergraph Learning. To effectively preserve the intra-
modality similarity, we introduce a hypergraph to maintain
the high-order relationship among samples. Let H be an inci-
dence matrix that indicates whether a vertex v is contained in
a hyperedge e. H(v, e) = 1 if v ∈ e, otherwise H(v, e) = 0.
Thus, the vertex degree of v can be computed as d(v) =∑

e∈E w(e)H(v, e), where w(e) is the weights corresponding
to hyperedge e. The edge degree of a hyperedge e is defined
as δ(e) =

∑
e∈E H(v, e). Dv is a diagonal matrix where the

diagonal element is the degree of each vertex. Similarly, De

and We are also diagonal matrices corresponding to the hy-
peredge degrees and the edge weights, respectively. Then,
we have the un-normalized hypergraph Laplacian matrix L =
Dv − S, where S = HWeD−1e HT . More information please
refer to [19].

Since hypergraph can capture the high-order relationship
among data samples, we impose a hypergraph regularization
term to constrain the learning of latent common semantic
representation.The hypergraph regularization term for each
modality can be formulated as follows,

Tr(VL(t)VT ), (3)

where L(t) is the hypergraph Laplacian matrix of computed
based on the t-th modality data.
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Discrete Hash Codes Learning. After obtaining the la-
tent semantic representation, we then need to learn the bi-
nary codes. Different from most previous methods taking the
signs of V directly, we introduce an orthogonal rotation ma-
trix R ∈ Rr×r which can ensure that the bits in B are or-
thogonal to each other. This can also contribute to avoid the
large quantization error generated by the relaxation scheme.
We formulate the binary codes learning based on orthogonal
rotation matrix R as follows,

min
B,R

α ‖B− RV‖2F ,

s.t. B ∈ {−1, 1}r×n,RRT = I.
(4)

Label Preserving. In addition, we also make full use of
the supervised information by inversely regressing it to the
binary codes to enhance the discriminative property, which
can be stated as follows,

min
B,G

β ‖B−GY‖2F + γ ‖G‖2F , (5)

where G ∈ Rr×c is the projection matrix.
Overall Objective Function. Combining Eqs. (2), (3),

(4), and (5), we obtain the overall objective function of
HDMFH as,

min
Ut,V,G

m∑
t=1

λt

∥∥∥X(t) − UtV
∥∥∥2
F
+ µ

m∑
t=1

Tr(VL(t)VT )

+ α ‖B− RV‖2F + β ‖B−GY‖2F + γR(Ut,V,G)

s.t. B ∈ {−1, 1}r×n,

m∑
t=1

λt = 1,RRT = I,

(6)

where λt, µ, α, β and γ are the tradeoff parameters, and
R = (Ut,V,G) is a regularization term to avoid overfitting.
The objective can be solved using an alternative optimization
method.

2.3. Hashing Functions Learning

As mentioned previously, HDMFH is a two-step hashing
method. After getting the unified binary codes B, we need to
learn a hashing function for each modality. Here, we adopt
the linear regression as hashing function to transform the
original features into compact binary codes. Specifically, we
obtain the hashing function for the t-th modality, i.e., Wt by
optimizing the following problem,

min
Wt

∥∥∥B−WtX(t)
∥∥∥2
F
+ θ ‖Wt‖2F , (7)

where ‖Wt‖2F is a regularization term, and θ is a balance
parameter. We can easily obtain the solution,

Wt = BX(t)T (X(t)X(t)T + θI)−1. (8)

Then, for the t-th modality query data X(t)
query, the hash

codes can be generated as follows,

Bquery = sgn(WtX(t)
query). (9)

3. EXPERIMENTS

In this section, to validate the effectiveness of the proposed
HDMFH, the details of the experiments are presented. We
firstly conducte the experiments on three widely used cross-
modal datasets consisting of images and text, i.e., Pascal
VOC [20], MIRFlickr [21], and NUS-WIDE [22]. Then, we
discusse the experiments of the proposed HDMFH on PKU
XMedia [23, 24] dataset which containing multiple modali-
ties. The settings of datasets are presented in Table 1.

Table 1. The Settings of Datasets.
Datasets #Instances #Training #Testing #Modality

Pascal VOC 9963 2808 2481 2
MIR Flickr 25000 5000 836 2
NUS-WIDE 269648 5000 1000 2

PKU XMedia 12000 800 200 3

3.1. Baselines and Implementation Details

To evaluate the effectiveness of our model, we compare the
proposed HDMFH with eight state-of-the-art cross-modal
hashing methods, i.e., CVH [14], CMFH [10], SMFH [11],
LSSH [16], FSH [7], IISPH [8], CMDH [9], and SCRATCH
[17]. In the experiments, all the parameters in these competi-
tors are carefully set based on the original papers. We adopt
a widely used metric for cross-modal retrieval to evaluate our
method, namely mean average precision (MAP).

We firstly evaluate the performance of all methods on
two common cross-modal retrieval tasks: 1) Text-to-Image
and 2) Image-to-Text. Then, we conducte six cross-modal
retrieval tasks or called multimodal retrieval on the mul-
timodal dataset: 1) Text-to-Image. 2) Image-to-Text. 3)
Text-to-Audio. 4) Audio-to-Text. 5) Image-to-Audio. 6)
Audio-to-Image.

For HDMFH, in the two modalities retrieval tasks, its pa-
rameters are set to λ1 = 0.3, λ2 = 0.7, µ = 1000, α = 0.1,
β = 0.1, γ = 100, and θ = 5. In the multiple modali-
ties retrieval tasks, its parameters are changed to λ1 = 0.3,
λ2 = 0.4, λ3 = 0.3, µ = 1000, α = 0.1, β = 1, γ = 0.01,
and θ = 10−4. All parameters are selected by a validation
procedure.

3.2. Experiment Results

We present the results from two aspects. The first one is about
the traditional cross-modal retrieval with two modalities. The
second one is multimodal retrieval, i.e., cross-modal retrieval
with more than two modalities.

3.2.1. Results on two modalities

The MAP results of HDMFH and all baselines on Pascal
VOC, MIR Flickr, and NUS-WIDE datasets are reported in
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Table 2. The MAP Results of all methods on Pascal VOC, MIR Flickr and NUS-WIDE datasets with various code lengths.

Task Methods
Pascal VOC MIR Flickr NUS-WIDE

8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

Text-to-Image

CVH 0.1253 0.1298 0.1363 0.1482 0.5786 0.5736 0.5699 0.5674 0.3718 0.3644 0.3587 0.3561
CMFH 0.3685 0.4663 0.4558 0.4304 0.5919 0.5929 0.5943 0.5957 0.3803 0.3842 0.3903 0.3971
SMFH 0.3943 0.5493 0.6856 0.6618 0.5981 0.6055 0.6117 0.6208 0.3780 0.3866 0.3887 0.3947
LSSH 0.4554 0.5403 0.6013 0.6182 0.5922 0.5893 0.5910 0.5934 0.4116 0.4215 0.4200 0.4253
FSH 0.1723 0.2161 0.3229 0.3901 0.5781 0.5825 0.5861 0.5904 0.3692 0.3829 0.3797 0.3893
IISPH 0.2971 0.4352 0.5004 0.5915 0.5966 0.5983 0.5952 0.5919 0.3871 0.4002 0.4081 0.4094
CMDH 0.8498 0.8938 0.9063 0.9067 0.6308 0.6366 0.6387 0.6934 0.6571 0.7014 0.7261 0.7317
SCRATCH 0.6301 0.8235 0.8993 0.9151 0.6904 0.7253 0.7165 0.7660 0.6387 0.5971 0.6786 0.7342
HDMFH 0.8743 0.9069 0.9237 0.9283 0.7302 0.7796 0.7818 0.7827 0.6867 0.7247 0.7556 0.7643

Image-to-Text

CVH 0.1253 0.1253 0.1256 0.1231 0.5785 0.5739 0.5699 0.5673 0.3767 0.3670 0.3602 0.3555
CMFH 0.1717 0.1826 0.1646 0.1639 0.5837 0.5815 0.5862 0.5859 0.3814 0.3826 0.3885 0.3938
SMFH 0.1808 0.2129 0.2404 0.2395 0.5854 0.5916 0.5945 0.5972 0.3768 0.3889 0.3849 0.3909
LSSH 0.2325 0.2498 0.2659 0.2792 0.5761 0.5768 0.5783 0.5799 0.3926 0.3932 0.3952 0.3969
FSH 0.1549 0.1658 0.2337 0.2541 0.5835 0.5905 0.5901 0.6004 0.3691 0.3859 0.3801 0.3894
IISPH 0.1724 0.2046 0.1989 0.2066 0.5853 0.5852 0.5832 0.5801 0.3807 0.3913 0.3976 0.3982
CMDH 0.2111 0.2842 0.307 0.3276 0.5821 0.5859 0.6043 0.6379 0.5459 0.6006 0.6039 0.6284
SCRATCH 0.2575 0.309 0.3625 0.3942 0.6533 0.6787 0.6674 0.7046 0.5529 0.5197 0.5811 0.6214
HDMFH 0.3502 0.3847 0.4173 0.4380 0.6714 0.7012 0.7098 0.7080 0.5691 0.6017 0.6167 0.6287

Table 3. The MAP Results of FSH, SCRATCH and HDMFH
on PKU XMedia.

Task Methods
PKU XMedia

8 bits 16 bits 32 bits 64 bits

Text-to-Image
FSH 0.0886 0.0951 0.1047 0.1120
SCRATCH 0.0797 0.0894 0.0940 0.0938
HDMFH 0.1152 0.1260 0.1551 0.1705

Image-to-Text
FSH 0.0820 0.0871 0.0932 0.0978
SCRATCH 0.0717 0.0822 0.0811 0.0716
HDMFH 0.0844 0.0983 0.1177 0.1320

Text-to-Audio
FSH 0.0844 0.0898 0.1015 0.1084
SCRATCH 0.0878 0.0971 0.1031 0.1064
HDMFH 0.1018 0.1151 0.1267 0.1371

Audio-to-Text
FSH 0.0847 0.0867 0.0938 0.1002
SCRATCH 0.0797 0.0908 0.0815 0.0763
HDMFH 0.0905 0.0985 0.1044 0.1154

Image-to-Audio
FSH 0.0885 0.0924 0.1078 0.1116
SCRATCH 0.0780 0.0885 0.0867 0.0969
HDMFH 0.1063 0.1267 0.1515 0.1594

Audio-to-Image
FSH 0.0971 0.1017 0.1092 0.1211
SCRATCH 0.0777 0.0836 0.0889 0.0856
HDMFH 0.1342 0.1429 0.1777 0.1992

Table 2. It presents the performance of Text-to-Image task
and Image-to-Text task when hash code length is 8 bits, 16
bits, 32 bits, and 64 bits, respectively. From this table, we
can conclude the following observations: 1) HDMFH obtains
the best results on both tasks with various code lengths and
significantly outperforms the baselines in some cases, which
can demonstrate the effectiveness of our method. The superi-
ority of HDMFH can be mainly attributed to its capability of
modeling complex data, which can better preserve the high-
order relationship among data samples. 2) Most supervised
methods, e.g., CMDH and SCRATCH, are superior to the
unsupervised ones, such as CMFH, LSSH, and FSH demon-
strating the advantage of utilizing the semantic information.
3) HDMFH performs much better than the baselines when

the length of hash codes is small. This depicts that HDMFH
can capture the high-order relationship better with short hash
codes, which is significant in a search task.

3.2.2. Results on multiple modalities

Table 3 demonstrates the MAP results of our proposed
HDMFH and the compared methods on the multimodal re-
trieval tasks on PKU XMedia dataset. From this table, we
can observe that the proposed HDMFH achieves the best
MAP results on all the six tasks, which further demonstrates
the advantage of our proposed approach on multimodal re-
trieval. This is mainly because our HDMFH models the
intra-modality semantic similarity by the hypergraph learn-
ing, which maintains the high-order relationship. In addition,
the accuracy of the retrieval can be further improved by in-
versely regressing label to the unified binary codes.

4. CONCLUSION

In this paper, we have proposed a novel cross-modal hash-
ing method HDMFH for multimodal retrieval. Combined
with the hypergraph learning, our method can capture the
high-order relationship among samples in each modality. Our
HDMFH can handle the cross-modal retrieval with more
than two modalities. Extensive experiments on three cross-
modal benchmark datasets and one public multimodal dataset
demonstrated that HDMFH outperforms the state-of-the-art
cross-modal hashing methods.We plan to extend our HDMFH
into a deep framework in the future.
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