
BRDPHHC: A Balance RDF Data Partitioning Algorithm
based on Hybrid Hierarchical Clustering

Yonglin Leng, Zhikui Chen, Fangming Zhong, Hua Zhong
School of Software Technology, Dalian University of Technology, 116620, Dalian, China

Abstract - Data partitioning is a fundamental step to achieve
effective storage and query of RDF big data. This paper presents
a balance RDF data partitioning algorithm based on hybrid
hierarchical clustering (BRDPHHC), which combines AP and K-
means clustering. BRDPHHC’s functionality includes three
aspects: (i) a pre-processing step combining nodes compression
and nodes remove to reduce the scale of raw data points, (ii) AP
clustering algorithm is used to coarsen the RDF graph step by
step and produce data blocks, and (iii) K-means algorithm is
used for data partitioning finally. Experiments on benchmark
datasets demonstrate the effectiveness of the proposed scheme.

Index Terms - RDF; data partitioning; hybrid hierarchical
clustering

I. INTRODUCTION

The Resource Description Framework (RDF) is the W3C’s
recommendation as the basement of the semantic web [1],
which can represent all the identified information in the web
and provide the interoperability between applications [2]. RDF
data can be described as a collection of triples denoted as SPO
(subject, predicate, object), in which the subject indicates an
entity, and the object is the name of the entity or literal in
predicate. It can also be represented by a directed graph, with
the entities (i.e. subjects and objects) as nodes and the
predicate as directed edges from subject to object [3]. Fig.1 (a)
shows an example RDF triples, and Fig.2 (b) is the directed
graph of RDF.

(a) Example of RDF triple

(b) Example of RDF directed graph
Fig. 1 RDF examples

With the wide application of RDF data, RDF data size
increases sharply. The RDF data storage in single server
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cannot meet the requirement of massive data storage and
query. To tackle this problem, the distributed storage was
proposed to store the massive RDF data [3, 4]. The data
partitioning is a key concern in RDF data distributed storage.
In other words, a bad partitioning scheme will result in low
efficiency of storage and query.

Typical data partitioning algorithms adopt horizontal or
vertical partitioning based on triples [5]. This kind of
algorithms ignores the correlations between triples, leading to
a large number of join operations among the compute nodes
during the RDF query. To address this problem, graph-based
approach has been proposed to partition the RDF data, which
stores the closely related nodes in the same compute node [6].
In this scheme, most of data queries can be performed in
parallel to improve the query efficiency. Moreover, this
scheme can reduce the join operation among the compute
nodes. The representative partitioning algorithm based on
graph including geometric partitioning [7], spectral
partitioning [8] and multilevel partitioning algorithm [9, 10,
11].

Compared with other graph partitioning methods, the
multilevel partitioning algorithm is superior to others in time
complexity and the scale of data. However, this kind of
algorithms mainly focuses on the partitioning efficiency,
ignoring the balance of data partitioning, resulting in the
difficulty in parallel to perform. In this paper, we present a
balance RDF data partitioning algorithm based on hybrid
hierarchical clustering (BRDPHHC), which works in three
steps. Firstly, a pre-processing step is executed to reduce the
number of raw data points by combining the special attributes
and removing the high degree nodes. Secondly, the affinity
propagation clustering algorithm (AP) is used to pre-cluster
the RDF graph for producing data blocks. In each AP
clustering, we merge or split the data blocks to balance the
scale of the data blocks through interactive edge. Finally, an
interactive edge weighted K-means clustering method is
presented to partition data blocks and to realize the partition.

The rest of the paper is organized as follows. In Section 2,
we present the pre-processing method for RDF graph by two
steps. Section 3 depicts the similarity measurement based on
adjacency and interactive edges. In Section 4, we describe the
BRDPHHC algorithm for RDF data partitioning. Performance
evaluation is illustrated in Section 5. Section 6 concludes the
paper.

II. PRE-PROCESSING FOR RDF GRAPH

In this section, we present the proposed pre-processing
steps for RDF graph. Combination of the nodes with unique
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attribute value is first described, followed by the removing of
the nodes with high degree.
A. Combination of the Nodes with Unique Attribute Values

Given an RDF graph ( , )G V E� , e lV V V�  
represents the node set in which eV denotes the entity node

set and lV denotes the attribute node set, while

{ ( , ) | , }i j i j r aE e v v v v V E E� � �  denotes the directed

edge set in which rE denotes the relationship edge set and aE
denotes the attribute edge set.

If the value of jv is only belonging to the entity node iv
under the condition ( , )i j av v E� , then iv and jv must be
assigned to the same storage node in the process of
partitioning. For example, the node “5712396” which is the
value of the attribute edge “telephone” is only belonging to the
entity “student50.” To improve the efficiency of partitioning,
the paper combines such nodes and their corresponding entity
to one node.
B. Remove of High Degree Nodes

In the real applications, some nodes have high degrees
while others have low degrees. For example, over 90%
nodes have only less than 5 neighbors while some nodes
with more than 100, 000 neighbors in DBpedia [12].
Generally speaking, when one node has more neighbors, it
is queried more frequently, leading to higher
communication cost [3].

To reduce the join operations in the process of query,
the paper removes the nodes with high degrees before
partitioning. After partitioning, the removed nodes will be
stored into such the storage nodes with the corresponding
nodes.

III. SIMILARITY MEASURE

Similarity measurement is the key to the graph clustering
technique. This section describes two metrics to calculate the
similarity between node pairs.

A. Adjacency Measure
In this paper, we propose a metric based on adjacency.

The similarity measurement based on adjacency is widely
used in many graph partitioning algorithms to group nodes,
which are highly connected [13]. The idea of adjacency
measure can be expressed as “if the neighbors of one node
u are connected with another node v , then the nodes u
and v have tighter connection. In contrast, the nodes u
and v will become looser.” Furthermore, the shortest
distance between two nodes also affect the similarity.

We use l to denote the shortest distance between two
nodes. The weight between two nodes is defined as follows:

1/uvw l� (1)
The similarity between two nodes is defined as

follows:

 
 

�

��
ku(u)Nk

kv(u,v)erk

w
w
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r

rint (2)

, where is the neighbor set within the radius r of the
node and )()(),(int vNuNvuer rrr �� is the
intersection of the neighbor sets of the node u and v .

For instance, the similarity between u and v is as
shown in Fig. 2, s(u, v) =0.667 and s(u, m) =0.5. Whereas,
s(a, b) =0.7143 and s(a, d)=0.5714, which have the same
number of neighbors, but they have different weights,
resulting in the different similarities. Here, the computation
of similarity neglects the direction of edges.g g

Fig. 2 An example of adjacency measure

B. Interactive Edge Measure
Interactive edge is the edge generated by the nodes in two

different partition. One principle of RDF graph partitioning is
to minimize the interactive edge. In hybrid hierarchical
clustering, from the second layer, the data blocks in each layer
are clustering collections of the previous layer. In order to
minimize the interactive edges among the compute nodes, we
assume that the more the number of interactive edges between
two data blocks, the larger the similarity is, and the data
blocks are easily clustered into a collection.

Given two data blocks iC and jC , ( , )i jcut C C
represents the number of interactive edges. As shown in Fig.3,
in the first layer, the nodes {a, b, c, d, e, f} are clustered into a
data block 1C and the nodes {g, h, i, j} are clustered into

another data block 2C , so 1 2( , ) 5Cut C C � .

Fig. 3 Example of interactive edge
We use a linear function conversion to normalize the

similarity between data blocks, where min ( )kcut C and

max ( )kcut C denote the minimum and maximum number of
interactive edges in k data blocks.
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max min
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similarity C C

cut C cut C
!

�
!

(3)

IV. BRDPHHC ALGORITHM

In this section, we first present the framework of
BRDPHHC algorithm, which simultaneously considers both
interactive edge and balance. Then, the detailed steps are
described. The framework of BRDPHHC algorithm is shown
in Fig.4.

Fig. 4 Framework of BRDPHHC algorithm

A. Hierarchical AP Clustering
AP clustering algorithm was proposed by Brendan J.

Frey and Delbert Dueck, which is a new clustering algorithm.
Compared with the traditional clustering algorithms, AP
clustering does not require a pre-specified number of clusters,
and it iteratively transmits real-valued messages among the
data points to gradually find the potential exemplars for
forming a collection of high quality exemplars.

AP clustering algorithm takes a similarity matrix between
data points as an input, where the similarity ( , )s i k indicates
how well the data point with index k is suited to be the
exemplar for data point i [13]. AP iteratively updating a
responsibility matrix R , sent from data point i to candidate
exemplar point k , which reflects the accumulated evidence
for how well-suited point k is to serve as the exemplar for
point i , considering other potential exemplars for point i ,
and an availability matrix A , sent from candidate exemplar
point k to point i , which reflects the accumulated evidence
for how appropriate it would be for point i to choose point
k as its exemplar, taking into account the support from other
points that point k should be an exemplar. To begin with, the
availabilities matrix A are initialized to zero. Then, the
responsibilities are computed using the rule.

'

' '( , ) ( , ) max{ ( , ) ( , )}
k k

r i k s i k a i k s i k
∀

� ! ( (4)

The following availability update gathers evidence from
data points as to whether each candidate exemplar would
make a good exemplar:

'

'

{ , }

( , ) min{0, ( , ) max{0, ( , )}}
i i k

a i k r k k r i k
#

� (  

'

'( , ) max{0, ( , )}
i k

a k k r i k
∀

� (5)

In each iteration, there are generally 2n data pairs whose
responsibility and availability values need to be calculated,
thus the computation complexity is 2( )O n . When the number

of iterations is T , the computation complexity is 2( )O Tn .
This greatly affects the performance especially when the data
are large. It has been pointed out in [14] that the sparsity of the
constructed graph will lead to faster calculation since the
information propagation only needs to be performed on the
existing edges. So for a sparse similarity matrix, the
complexity will up to ( )O Tn [15].

The goal of RDF graph partitioning is to cluster the
closely connected nodes in a compute node. So the smaller
similarity between two nodes, the less possibility two nodes
cluster together. In order to improve the efficiency of
clustering, we set the similarity equal to !) if the similarity
values less than � . As a result, the sparsity of the matrix
improved and time complexity in AP clustering is reduced.
Algorithm 1: Hierarchical AP Clustering Algorithm(HC)
Input: RDF graph ( , )G V E� cluster threshold T
Output: Cluster set ∃ %1 2, , , mC C C C� � ,where m T&
Method:
1. Construct a sparse similarity S based on (2)
2. Execute AP clustering on matrix S and generate m clusters
3. If m T∋ , compute the similarity among the m clusters
using (3) to produce a new similarity matrix S
4. Take S as a new input continue to run 2, until m T&
B. Partitioning-balance Adjustment

The balance of the subgraph scales plays an important
role in distributed storage and query when a huge graph is
partitioned into several subgraphs. Specially, a bad balance
will lead to a low efficiency of query. Therefore, to preserve
the balance, the partitioning-balance will be adjusted in each
clustering.

Given a graph ( , )G V E� , we divide the graph into k
partitions 1 2{ , , , }kP P P P� � . The partitioning-balance of a

k-way partitions should satisfy 1 21 1ie PB e! & & ( , where

/i iPB V m� and /m V k� . The partitioning-balance
adjustment approach is outlined in Algorithm 2.
Algorithm 2: Partitioning-balance Adjustment

Input: Partition 1 2{ , , , }kP P P P� �
Output: New partitioning-balance ' ' ' '

1 2{ , , , }tP P P P� �
Method:
1. Compute partitioning-
balance 1 2{ , , , }kPB PB PB PB� � .

2. For p =1 to k
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if 11iPB e∗ !
( , )i jmerge P P , where ( , )i jCut P P is max

and 21jPB e∗ ( .

else if 21iPB e∋ (
Partition iP use KL algorithm

until '
1 21 1ie P e! & & ( .

C. Final Partitioning
During the Hierarchical AP clustering, we use the AP

clustering to gradually reduce the scale of the RDF graph. But
the number of clusters in AP clustering is uncertain because of
the influence of preferences. When the compute node is
specified, AP clustering cannot achieve the final partition. In
this phase, we use K-means clustering method to perform the
final clustering.
Algorithm 3: K-means Clustering
Input: interactive edge matrix S , the number of clusters
k
Output: cluster set ∃ %1 2, , , kC C C C� �
Method:
1. Select k initial cluster centers ∃ %kcccC ,,, 21 �� .
2. Assign each data object to its closest center according to
similarity between data objects and cluster centers.
3. Update the cluster centers.

1) Compute the average vector ( )iS v of cluster iC .

1( ) ( , ),
k i

i k j j
v Ci

S v S v v v V
C �

� + � 
2) Find the new cluster center '

ic .
' arg min ( ) ( )

k ii v C k ic S v S v�� !

4. Repeat step 2 and 3, until the clustering objective E
function converges.

2

1
( ) ( )

k i

k

k i
i v C

E S v S v
� �

� !  

D. Complexity Analysis
There are three main operations in the designed algorithm.

The first one is the similarity calculation with the time
complexity of 2( )O n . The second one is the Hierarchical AP
clustering with the time complexity of ( )O Tn , where T is the
number of iterations. The last one is the k-means clustering
with the time complexity of ( )O KTm , where K is the
number of clusters and m is the number of clustering
collections. Therefore, the total time complexity of
BRDPHHC is approximately 2( )O n .

V. EXPERIMENTS

A. Datasets and Environment
In this section, we present a set of experiments on the

Lehigh University Benchmark (LUBM) [16] and the DBLP
Bibliography datasets [17]. The number of edges and nodes
are shown in Table I. All experiments were performed on an
i3 3.30GHz PC running Windows XP with 4GB main memory.

TABLE I STATISTICS OF DATASETS USED IN EXPERIMENTS

|V| |E| Degree First mergemin max
LUBM 7171 14901 1 1419 4085
DBLP 5035 17277 1 256 3682

B. Interactive Edge Ratio and the Time Performance
Given a graph ( , )G V E� , we divide the graph into

k clusters 1 1 1 2 2 2( , ), ( , ),..., ( , )k k kP V E P V E P V E� � � ,
then the interactive edge ratio can be described as follows:

1
( , \ )

k

i i
i
cut P G P

IER
E

��
 

(6)

, where ( , \ )i icut P G P is the number of edges between iP
and the rest of the graph. The adjacency measurement radius r
is set to 2 in the experiment. Table II shows the number of
removed nodes and edges under r=2 of different datasets. Fig.
5 shows the interactive edge ratio on different dataset and Fig.
6 presents runtime of the partition.

TABLE II STATISTICS OF REMOVE NODES AND EDGES
Remove condition Remove nodes Remove edges

LUBM

0 0 0
1 >500 3 2081
2 >100 8 3277
3 >60 13 3602
4 >40 18 3841

DBLP

0 0 0
1 >500 0 0
2 >100 16 3070
3 >60 25 3780
4 >40 41 4582
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Fig. 5 Interactive edge ratio on different remove condition
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Fig. 6 Partition efficiency on different remove condition
From the result, we can see that the interactive edge ratio

decreases and the time performance improves with the remove
of high degree nodes.

FAP is a multilevel graph partitioning method, which
uses a Fast Sampling algorithm to coarsen the input sparse
graph and chooses a small number of final representative
exemplars. For these exemplars, FAP uses a density-weighted
spectral clustering to partition the exemplars. Finally, all data
points can be assigned through the corresponding
representative exemplars [10].

In this paper we compared BRDPHHC algorithm and
FAP algorithm in interactive edge ratio and runtime. The
results are shown in Fig.7 and Fig.8.

Fig.7 (a) and (b) present the interactive edge ratio in
LUBM and DBLP dataset respectively. It can be seen that the
interactive edge ratio of FAP algorithm is higher than
BRDPHHC.
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Fig. 7 Edge-cut on different datasets
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Fig. 8 Partition efficiency on different datasets

C. Partitioning-Balance
Table III and Table IV shown the comparison of

partitioning-balance between BRDPHHC and FAP in LUBM
and DBLP datasets.

We calculate maxPB and minPB using (10) and (11).

max max( ) /iPB V m� (10)

min min( ) /iPB V m� (11)
From Table III and Table IV, the balance obtained by the

proposed algorithm is better than that obtained by FAP.
Furthermore, the removing of the nodes with high degree
results in a good balance, which demonstrates the
effectiveness of the proposed algorithm.

TABLE III PARTITIONING- BALANCE OF LUBM
Remove
condition

BRDPHHC FAP
PBmax PBmin PBmax PBmin

1.034 0.942 1.210 0.742
>500 1.033 0.945 1.169 0.819
>100 1.017 0.980 1.134 0.836
>60 1.016 0.980 1.096 0.897
>40 1.013 0.977 1.087 0.914

TABLE IV PARTITIONING-BALANCE OF DBLP
Remove
condition

BRDPHHC FAP
PBmax PBmin PBmax PBmin

1.053 0.959 1.134 0.836
>500 1.053 0.959 1.134 0.836
>100 1.019 0.974 1.095 0.907
>60 1.017 0.978 1.064 0.936
>40 1.045 0.933 1.057 0.957

VI. CONCLUSION

In this paper, we proposed a balance RDF data
partitioning algorithm based on hybrid hierarchical clustering,
including AP clustering and K-means algorithm. Firstly, for
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the sake of parallelization, balance adjustment algorithm is
used to ensure the balance in each level AP clustering. Further,
to improve the efficiency of RDF graph partitioning, high
degree nodes are removed before clustering. Finally, the
experimental results demonstrate that our proposed algorithm
outperforms FAP by a better balance.
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