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SUMMARY

The continuous growth of resource description framework (RDF) data poses an important challenge on RDF
data partitioning that is a vital technique for effective cloud storage. Recently, many partitioning algorithms
for large RDF data have been developed, and most of them are based on graph partitioning. However, existing
graph partitioning methods could not partition asymmetric RDF data effectively, resulting in a lower
performance for cloud storage. This paper proposes a balanced RDF graph partitioning algorithm for storing
massive RDF data on cloud. We first devise a modularity-based multi-level label propagation algorithm
(MMLP) to partition RDF graph roughly and then use a balanced K-mediods clustering algorithm for
final k-way partitioning. Balanced RDF graph partitioning algorithm designs an effective label update rule
and a balanced modification strategy to achieve a high quality coarsening result and make the partition as
equilibrium as possible. Experiments are carried on two representative RDF benchmarks and one real
RDF dataset by comparison with two representative graph partitioning methods, that is, METIS and
MLP+METIS. Results demonstrate that our proposed scheme can produce a high-quality partition for
massive RDF data storage on cloud. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The resource description framework (RDF) [1] has been widely used as the standard data model
for Web resources organization and storage because of its simplicity and flexibility. The RDF data
model [2] is usually described by a set of triples or a directed graph, as shown in Figure 1. Recently,
with the rapid increasing of Web resources, the RDF data size is growing with a high speed. A
large number of RDF data poses an important challenge on storage [3, 4]. Specially, a single server
cannot store such large scale data. Recently, cloud storage has emerged as an effective tool for
storing massive data, even big data, by integrating a lot of storage devices on the Internet. Cloud
provides the storage services at a lower cost and a higher scalability for massive data. Obviously,
cloud storage can be used for massive RDF data storage [5–7].

To store large RDF data on cloud effectively, RDF data needs to be divided into many data blocks
that will be distributed to different storage nodes. An effective RDF data partitioning can improve
the query efficiency by reducing the communication overhead among different storage nodes [4].
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Figure 1. Resource description framework (RDF) data model. (a) RDF triples; (b) RDF graph.

Therefore, RDF data partitioning is a vital technique for high efficient cloud storage. Recently, many
RDF data partitioning methods have been proposed [4, 8–13]. Most of them are based on graph
partitioning that usually distributes closely related nodes to the same storage node. By this way, most
of the join operations in SPARQL query [14] can be executed inside one storage node to improve
the efficiency of the complex SPARQL query in parallel.

Multilevel graph partitioning method is more effective than other graph partitioning method in
face of large scale RDF data. Huang et al. [4] utilized a multilevel graph partitioner, that is METIS
[15], to optimize RDF data partitioning. The coarsening scheme of METIS is to collapse two adja-
cent vertices to form a matching. A matching does not allow two of edges to incident on the same
vertex. According to the statistics, many real RDF graphs are asymmetric that is the neighbors of
vertex (i.e., the degree of vertex) are uneven. For example, over 90% vertices have only less than
five neighbors while some vertices with more than 100,000 neighbors in DBpedia. In the asymmet-
ric distributed graph, the degree distribution prevents large matchings of METIS, leading to a slow
shrink in the number of edges and the size of coarsened graph [16]. Wang et al. [12] introduced
a multi-level label propagation algorithm [17] (MLP) to coarsen the graph and then used METIS
to partition the coarsened graph. MLP assumed that vertices sharing many common neighbor ver-
tices should have the same label. However, the correlations among vertices are subject-object in the
RDF graph, which rarely exist common neighbor vertices. Thus, the update rule based on common
neighbor vertices is unsuitable for RDF graph partitioning.

Based on the aforementioned analyses, our goal is to build a suitable RDF graph partitioning
algorithm, which must address challenges introduced by RDF graph characteristics, that is, the
asymmetric distributed leads to the limitation of coarsening size and the unequal relation of vertices
causes the invalid label update.

To achieve the aforementioned challenges, this paper proposes a balanced RDF graph partitioning
algorithm (BRGP) for storing massive RDF data on cloud. BRGP provides two more suitable meth-
ods in the graph coarsening and cluster partition phase for the asymmetric and the unequal relation
of vertices in RDF graph. To summarize, our contributions include the following:

� A label update rule based on modularity is introduced to improve the coarsening quality and
efficiency of the asymmetric RDF graph.
� A label energy function is proposed to avoid the ‘monster’ label, by which the label energy

decreases as the label propagation and the capacity of coarsened vertex is more even.
� A balanced adjustment strategy based on the edge weight and vertex weight is integrated with

K-medoids to implement k-way partitioning.
� An equivalent pruning strategy is proposed to decrease the size of original graph.
� A set of extensive experiments are executed to verify the partitioning performance and quality

of BRGP algorithm.
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The rest of this paper is organized as follows: Section 2 reviews some related works about RDF data
partitioning. In Section 3, we introduce some notations that are closely related to our work, and then
we present our BRGP algorithm and propose an equivalent pruning strategy in Section 4. Section 5
provides a detailed experimental evaluation. Finally, we conclude the paper.

2. RELATED WORK

File and hashing are two RDF data partitioning methods based on triples. In [18–20], the file par-
titioning and placement policies are employed to partition and distributed RDF data in the vanilla
Hadoop. Hash partitioning is another typical method, which is widely used in many distributed RDF
engines [8–10]. This method distributes RDF triples into different partitions by computing a hash
key over either the subject or the object of each triple. In this way, the triples with a common subject
or object would be distributed to the same storage node. A simple SPARQL query with only one
center vertex, and one or more edges pointing from the center vertex to other vertices, can be com-
pletely executed in parallel without any communication across the storage nodes in the case of the
file and hash partitioning. However, file and hashing partition ignore the correlation among triples.
Therefore, a complex query with more than one center vertex would lead to substantial I/O cost and
communication overhead.

Graph-based approaches [21, 22] have also been applied to partition the RDF data by distributing
the closely related nodes to an identical storage node. An optimal graph partitioning is to optimize
several given criteria, such as minimizing the number of edges spanning different storage nodes,
and leveraging the number of vertices in every storage node. Unfortunately, the optimal graph par-
titioning is a NP-complete problem. Hence, a lot of approximate algorithms are proposed [23–26].
In particular, the heuristic algorithms are effective in finding the sub-optimal solution. For example,
Kernighan–Lin (KL) [23] and Fiduccia and Mattheyses (FM) [24] are two typical heuristic meth-
ods. The KL method generates a k-way partitioning by recursive bisection, and the FM approach
improves KL algorithm in running time. Additionally, simulated annealing [25] and genetic algo-
rithm [26] are also introduced to improve the performance of graph partitioning. However, these
approaches require to access the entire graph randomly, which is inefficient in large-scale data
partitioning.

The multilevel partitioning algorithms [12, 15, 27–29] are proposed because of its low running
time and high performance in tackling large-scale RDF graph. Such approaches consist of three
phases: graph coarsening, initial partitioning, and graph refinement. Huang et al. [4] adopt METIS
[15] as a graph partitioner to partition RDF graph. However, the maximal matching scheme in
METIS reduces the convergence size of graph coarsening for an asymmetric RDF graph. Another
multilevel graph-partitioning method (MLP) [12] uses LP [17] to coarsen the graph layer by layer
and uses METIS to finish k-way partitioning. MLP is effective in partitioning billion-node graph in
a reasonable time. But the label update rule of MLP is not applicable to RDF data.

Lee et al. [30] propose a data partitioning framework (SPA), which is scalable and customizable
and can partition large RDF graph by vertex-centric blocks partitioning mechanism. Nevertheless,
SPA suffers from a large amount of data duplication problem. Wu et al. [13] introduce a path
strategy-based method, which decomposes the RDF graph into the end-to-end paths. Then such
paths are considered as the finest partitioning elements to realize the partitioning. They utilize path
based balancing strategy as performance measurement, while our approach employ the node based
strategy.

3. PRELIMINARIES

Before going into the details of our approach, firstly, we briefly review some notations that are
closely related to this paper. The notations are listed in Table I.

Definition 1 (RDF graph)
We define G D .V;E/ as a RDF graph, in which the set of vertices V consists of all the subjects
and objects of the RDF triples and the set of edges E � V � V denotes the directed edges from the
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Table I. Frequently used notations.

Notation Description

G=Gi=G
0

an RDF graph / subset of G / coarsened graph of G
V=Vi=V

0

the set of vertices in G / subset of V / the coarsened vertex set
E=Ei=E

0

the set of edges in G / subset of E / the coarsened edge set
v=v
0

i a vertex in G / a coarsened vertex in G
0

n the number of vertices in G
m the number of edges in G
N.v/ the set of neighbors of v
k the number of partitionings
deg.v/ the degree of v
P a partitioning of G
e.Vi ; Vj / the edge cut between Vi and Vj
� a float factor
w.v

0

i /=w.v
0

i ; v
0

j / the vertex weight of v
0

i / the edge weight between v
0

i and v
0

j

RDF, resource description framework.

subjects to objects. We use n D jV j and m D jEj to represent the number of vertices and edges.
Given a vertex v 2 V , N.v/ represents the set of neighbors of v and deg.v/ denotes the number of
edges connecting to vertex v, where deg.v/ D jN.v/j.

Definition 2 (RDF graph partitioning)
Given a RDF graph G D .V;E/, a k-way partitioning P is to divide G into k disjoint partitions
P D ¹G1; G2; : : : ; Gkº, where Gi D .Vi ; Ei /, i D 1; 2; : : : ; k. For any i ¤ j , we have Vi

T
Vj D

' and
Pk
iD1 Vi D V .

Definition 3 (Edge cut)
Given a k-partitioningP of RDF graph, the edge cut refers to the number of edges spanning different
partitions. It can be described as follows:

EC.P / D

kX
iD1

kX
j>i

e.Vi ; Vj / (1)

Definition 4 (Balanced partitioning)
The balanced partitioning refers to the number of vertices approximately equal to n=k in each
partition. A float factor 0 < � < 1 is allowed to make the partitioning size differ in a small range,
that is, the number of vertices of Gi satisfies the following property:

n.1 � �/=k 6 jVi j 6 n.1C �/=k (2)

In order to reduce the communication overhead in a SPARQL query and ensure the parallel exe-
cution of all storage nodes, our partitioning goal is to maintain the locality of information and the
balanced load distribution. That is to say jVi j � n=k and EC.P / are minimized.

Definition 5 (Coarsened graph)
Given a graph G D .V;E/, the coarsened graph G0 D .V 0; E 0/ is to collapse the closely connected
vertices in G into a coarsened vertex. We have a coarsened vertex set V

0

D ¹v
0

1; v
0

2; :::; v
0

nº and a
coarsened edge set E

0

, where .v
0

i ; v
0

j / 2 E
0

iff 9u 2 v
0

i ; v 2 v
0

j , and .u; v/ 2 E. The coarsened
graph is a weight graph based on vertex and edge. The vertex weight of v

0

i is defined as follows:

w.v
0

i / D
X

u2v
0

i

w.u/ (3)

and the edge weight is denoted as follows:

w.v
0

i ; v
0

j / D
X

e.u;v/2E;u2v
0

i
;v2v

0

j

w.e.u; v// (4)
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4. BRGP ALGORITHM

In this section, we present BRGP algorithm to partition the RDF graph. BRGP algorithm includes
two steps: step 1 describes how to coarsen the graph (Section 4.1) and step 2 introduces BKMC algo-
rithm for the final k-way partitioning (Section 4.2). To improve the efficiency and reduce the size
of graph, we propose an optimization algorithm to pruning the original RDF graph in Section 4.3
Finally, in Section 4.4, we give the complexity analysis of BRGP.

4.1. Graph coarsening

In this section, we devise MMLP algorithm, which is a modularity-based MLP algorithm. MMLP
collapses the vertex of graph to form a coarser graph on the upper level. For each level, LP algorithm
is performed to find dense sub-graphs, and each sub-graph forms a coarsened vertex of upper level.
As an example in Figure 2, the coarsened vertices C 21 and C 22 in second level come from two dense
sub-graphs in the first level. Furthermore, the coarsened graph is a weight graph based on vertex
and edge. In Figure 2, the weight of coarsened vertices C 21 and C 22 are 6 and 4, respectively, and the
weight of coarsened edge between C 21 and C 22 is 2. In order to avoid the ‘monster’ label, MMLP
further introduces the label energy attenuation strategy to balance the size of coarsened vertex. The
details of algorithm are listed in Algorithm 1.

Algorithm 1 MMLP

Input: G D .V;E/; ı, "
output:C D ¹c1; c2; :::; ctº
Method:
1. Assign an unique label to each vertex of the graph
2. Assign an initial energy to each label
3. Random sort each node
4. For each vertex v // the label of v is l1

For each u 2 N.v/ and El2.u/ > " // the label of u is l2
Compute �Q D �Q1 C�Q2

End for
Select label l2 with the maximal gain of modularity and �Q > 0

If jl2j > 1 then
Select the label with the least vertices

End if
Update the label of v with l2
Update the label energy of v
End for

4. If exist the update labels, run step 3, until the labels no longer update
5. Output coarsening cluster set C D ¹c1; c2; : : : ; ctº
6. If t is too big, make the coarsening set C as a new input, run step 1, until t reaches a
relatively moderate value.

(1) Label propagation
LP is originally used for community detection in social network. In this paper, we utilize LP

to detect the dense sub-graphs during the graph coarsening process because of two factors: (1)
each vertex does not need to access other vertex’s neighbors besides its neighbors during the
label update process, which is very suitable for parallel computing. (2) LP has a linear time
complexity.

The basic idea of naive LP is that each vertex is assigned a unique label in initial phase.
Then, we iteratively update the label of each vertex. In the process of iteration, each vertex
takes the most frequent label of its neighbors as its own label. If there are multiple candidate
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Figure 2. The process of graph coarsening.

labels with the same top frequency, select one randomly. This process terminates until there
are no labels change. Vertices with the same label will be distributed to the same community.

However, a large number of experiments show that the label update rule of naive LP would
form ‘monster’ label in the asymmetric RDF graph. The reason lies in that the label of high
degree vertex has a higher spread probability compared with other vertices. In addition, Wang
et al. [12] assumed the vertices should be assigned the same label if they shared a lot of
common neighbors. Because of the unequal relation among the RDF data vertices, there are
few common neighbors between vertex and its neighbors. Therefore, we utilize the gain of
modularity and label propagation energy to resolve the aforementioned problems.

(2) Label update rule based on modularity gain
Modularity is introduced by Newman and Girvan [31] to measure the quality of graph clus-

tering, which is a scalar value between �1 and 1. Specially, it is used to measure the density of
the intra-clusters edges as compared with the inter-clusters edges. The modularity of clustering
graph is described as follows:

Q D
Xk

iD1

0
@I.Vi /

m
�

 P
v2Vi

deg.v/

2m

!21A; (5)

where I.Vi / is the number of edges inside cluster i . It can be easily inferred that the modularity
of cluster i is as follows:

Qi D
I.Vi /

m
�

 P
v2Vi

deg.v/

2m

!2
(6)

According to the definition of modularity, the quality of graph clustering increases as the
value of modularity increases. Therefore, we use the gain of modularity to update the vertex
label. For each vertex v and its neighbor label set L.v/, we compute the gain of modularity
by changing the label of v into its neighbors label. If a maximum gain exist and it is positive,
the label of v will be updated with the neighbor label of maximum gain. Otherwise, it will
stay in its original label. If there are multiple maximum labels, then select the label with the
minimum vertices.

Because vertex v changes label from l1 to l2, the change of modularity only occurs in
clusters with label l1 and l2. Therefore, we only need to compute modularity gain of two
clusters. The clusters with label l1 and l2 gain in modularity can be computed by Eqs (7)
and (8):

�Q1D

2
4I.l1/ �Nl1.v/

m
�

 P
j2l1

deg.j / � deg.v/

2m

!235 �
2
4I.l1/

m
�

 P
j2l1

deg.j /

2m

!235
(7)
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�Q2 D

2
4I.l2/CNl2.v/

m
�

 P
j2l2

deg.j /C deg.v/

2m

!235�
2
4I.l2/

m
�

 P
j2l2

deg.j /

2m

!235 ;
(8)

where I.l1/ and I.l2/ are the numbers of edges inside clusters with label l1 and l2, respec-
tively, Nl1.v/ and Nl2.v/ are the neighbor of v with label l1 and l2, respectively. Finally, we
calculate the total gain by Eq. (9) to find the most appropriate label l2, and change label of v
from l1 to l2.

�Q D �Q1 C�Q2 (9)

(3) Label propagation energy
Because of the asymmetric distribution of data, LP algorithm produces several large scale

clusters and many small size clusters, which affects the balance of the final partition. To avoid
this phenomenon, we assign an initial energy to each label. With the propagation of labels, the
label energy gradually decreases accordingly. If the label energy of v is less than the threshold
", the vertex of v will not be involved into the other vertex update. The label of v is updated
with label l ; the label energy of vertex v changes as follows:

El.v/ D arg max
j2Nl .v/

E.j / � ı; (10)

where ı is an attenuation factor. The ı controls the label propagation range and limits the
clusters size. In experiment phase, we set ı to a fixed value and a variable value separately,
and the variable value changes with the range vertex of degree.

4.2. The k-way partitioning

Because of the number of coarsened vertices are uncertain, MMLP cannot achieve the specified k-
way partitioning. As is known to all that the coarsened graph is a weight graph based on vertex
and edge, in which the weight of vertex represents the number of vertices in the coarsened vertex,
and the weight of edge reflects the number of edges spanning two coarsened vertices. Traditional
K-medoids clustering algorithm cannot ensure the balanced distribution of vertex. Therefore, in this
section, BKMC algorithm is executed on the top-level coarsened graph to attain a balanced k-way
partitioning, which not only minimizes the edge cut but also simultaneously keeps the balance of
vertex distribution.

(1) K-medoids clustering
K-medoids is a classical clustering technique that clusters n vertices into k groups. In each

group, the data points are similar to each other while the data points from distinct groups are
dissimilar. K-medoids clustering takes a similarity matrix between data points as an input. In
our work, we use K-medoids clustering to cluster the coarsened graph, in which each coars-
ened vertex is considered as one data point correspondingly, and the weight of edge represents
the similarity between data points. The similarity is in proportion to the weight of edge. In
order to normalize the similarity, we use a linear function conversion, as shown in Eq. (11),
where MIN denotes the minimum value of edge weight and MAX is the maximum value.

s.i; j / D
w.i; j / �MIN

MAX �MIN
(11)

The proper initial centroids are essential for finding a good partitioning. In this paper, instead
of selecting initial centroids randomly, we identify initial centroids from the density and dis-
tance point of view. If the neighbors of vertex i have lower local density and the vertex i is
far away from any vertices with a higher local density, then vertex i has a high probability of
being the cluster centroid [32]. First, the density �i of vertex i is defined as follows:
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�i D
X

j2V
0
;j¤i

�
1 � e

�
�
s.i;j /
dc

�2�
; (12)

where dc is the cutoff distance, and can be specified by user. In [32], the author suggests that
dc should satisfy the average number of neighbors account for around 1% to 2% of all data
points in the dataset.

We use ¹qiºniD1 to represent a subscript descending order of ¹�iºniD1. The distance di is the
maximum similarity from the vertex i to any other vertex with higher density:

dqi D

8<
:

max
qj Wj<i

.s.qi ; qj // i > 2

min
j>2

.s.qi ; qj // i D 1
(13)

Finally, we compute the density and distance product of vertex i using Eq. (14)

�i D �idi ; i D 1; 2; :::; n (14)

According to the product, we sort � in the descending order and the top k from the sorted list
is the initial centroids c D ¹c1; c2; : : : ; ckº. And then, each vertex vi except cluster centroids
will be assigned to a cluster according to the balanced adjustment strategy, which will be
discussed in the following paragraphs.

After assigning all vertices to k clusters C D ¹C1; C2; : : : ; Ckº, we update the cluster
centroid with the most centrally located vertex in each cluster. Firstly, the ‘average point’ of
each cluster will be computed by Eq. (15).

S.vi / D
1

jCi j

X
vk2Ci

S.vk; vj /;8vj 2 V (15)

The vector S.vi / is the average similarity for cluster Ci . Then the new centroid ci in each
cluster Ci is calculated by

ci D arg min
vj2Ci

��S.vj / � S.vi /�� (16)

The other vertices will be assigned again according to the new centroids, and the process is
executed iteratively until the clustering objective function converges. Our clustering objective
is to minimize the inter-cluster similarity. Thus, the objective function is defined as follows:

f .C / D

kX
iD1

kX
j>i

d.Ci ; Cj /; (17)

where d.Ci ; Cj / represents the similarity between any two clusters; it can be described as
follows:

d.Ci ; Cj / D
X
vi2Ci

X
vj2Cj

s.vi ; vj / (18)

(2) Balanced adjustment strategy
K-medoids clustering only assigns vertices to the closest centroid according to the similarity

between the distributed vertex and the centroid without considering the balanced distribution.
However, in order to realize the parallel query of storage nodes, we should not only minimize
the edge cut but also keep the load balance of storage node. Therefore, we introduce a balanced
adjustment strategy based on the edge weight and vertex weight to K-medoids clustering for
the k-way partitioning.

In order to keep balance, each cluster has a capacity limitation, which satisfies the definition of
balanced partitioning. After specifying the centroids, each super vertex is assigned to their closest
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cluster centroids. If the new super vertex makes the cluster exceed its capacity, BKMC will adjust
the internal vertices of cluster according to the similarity between these vertices and cluster centroid.
The steps of adjustment strategy are as follows (all adjustment is executed on the super vertices):

Step 1: Sorting all the internal vertices by ascending according to the similarity between vertices
and the cluster centroid;

Step 2: Finding the smallest vertex set s,whose similarity summation to cluster centroid and the
weight summation are smaller than the new vertex;

Step 3: If s exist, then replace these vertices with the new vertex;
Step 4: Otherwise assigning the new vertex to sub-optimum cluster.

Details of the BKMC Algorithm is described as follows:

Algorithm 2 BKMC

Input: the similarity matrix S , the number of clusters k and a float factor of balance �
output: the partitioning C D ¹C1; C2; :::; Ckº
Method:
1. Initial the cluster centers of coarsened graph c D ¹c1; c2; :::; ckº
2. Repeat until the clustering objective function converge

For each coarsened vertex v
0

i

Select a cluster Ct which has the maximum similarity between v
0

i and the centroid ct
If w.v

0

i /C capacity.Ct / < .1C �/n=k then
Assign v

0

i to Ct
Else

Execute the adjustment strategy
End if

End for
3. Update the cluster centroids
4. If the clustering objective function does not converge, repeat the step 2 until convergence.

4.3. Graph optimization

Through experimental analysis, we conclude that the vertex with only one incoming edge should
be merged with its neighbor. For the directed RDF graph, the directed edge connects the subject
and its attributed value, that is, object, in which some attribute values only belong to one subject,
so these vertices can be collapsed before BRGP algorithm. Given a RDF graph G D .V;E/, if
9v 2 V , where deg.v/ D 1 and N.v/ D u, then v must be assigned to the same storage node with
u. For this kind of vertex, which storage node it belongs to is decided by its only neighbor vertex.
Therefore, we design an equivalent pruning strategy to decrease the scale of RDF graph and get a
better efficiency. The steps of equivalent pruning strategy are as follows:

Step 1: Combine all vertices v with u, which satisfy deg.v/ D 1 and N.v/ D u ;
Step 2: Repeat step 1, until there is no qualified vertex.

4.4. Complexity Analysis

The time complexity of BRGP algorithm isO.lT1jEj/CO.kT2c2/, where T1 and T2 are the number
of iterations in LP and K-medoids separately, l is the coarsening levels, jEj represents the number
of edges in original RDF graph G, k is the number of partitions, and c is the number of vertices in
coarsened graph G

0

. Because of the liner time complexity of LP algorithm and l � jEj, therefore,
MMLP is still linear. In the final partitioning phase, due to c � jV j, so BKMC algorithm does not
affect the overall time complexity of BRGP. The space complexity isO.d jV j/, where d denotes the
average degree of vertices.
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5. EXPERIMENTS

In this section, a set of experiments are conducted on three representative RDF benchmark datasets
and one real RDF dataset to evaluate the partitioning performance and quality of BRGP. The run-
ning time and memory consumption are used to measure the performance of different partitioning
methods. The partitioning quality is evaluated by the edge cut and balance. Optimization experi-
ments further prove the effectiveness of equivalent pruning strategy in running time, and then query
experiments are executed to validate the superiority of BRGP in the complex SPARQL queries.
We compare our algorithm against two typical graph partitioning methods, that is, METIS and
MLP+METIS. We first introduce the datasets used in our experiments. Then the experimental
settings are described. Lastly, the experimental results and comparisons are presented in detail.

5.1. Datasets

Two representative RDF benchmarks, LUBM (the Lehigh University Benchmark) [33] and
SP2Bench [34] are used in our experiments. The LUBM features a university domain, and the
SP2Bench dataset features a DBLP domain. A real dataset DBLP is also utilized in our experiments,
which contains bibliographic descriptions in computer science. We generate three datasets from
LUBM and SP2Bench with different sizes: (1) LUBM50 and LUBM2000 covering 50 and 2000
universities, respectively, and (2) SP2B-100M having about one million triples. Table II shows the
details of the four generated RDF datasets.

5.2. Experimental settings

The graph partitioning experiments are performed on a PC with Intel Xeon at 2.00 GHz�24, 20GB
memory running 64-bit Linux. In graph partitioning experiments, each dataset is divided into 4,
8 and 16 subsets, respectively. For the competitor METIS, we set the parameters ‘-ptype’ and ‘-
ctype’ as k-way partitioning (kway) and sorted heavy-edge matching (shem). MLP+METIS uses
LP to coarsen graph based on common neighbors and METIS to achieve the final partitioning. In
the experiment of partitioning balance, we conduct two set of experiments with the proposed BRGP
method (BRGP1 and BRGP2) to validate the effectiveness of the label energy function as stated
in Eq. (10). The ı in BRGP1 is set to 0.2, and the label initial energy is set to 1. In BRGP2, we
set ı to 0.1, 0.2, and 0.5, respectively, according the range of vertex degree. We also validate the
effectiveness of the graph optimization for our method, METIS and MLP+METIS.

To evaluate the partitioning method, a set of queries is executed on the partitioning results, which
are distributed to a cluster with 16 computing nodes. We follow the implementation and setup of the
distributed RDF processing system proposed in [4]. In the distributed system, the graph partitioning
machine mentioned earlier is considered as the master machine, and each computing node in the
cluster has a 2.33 GHz Intel Xeon processor, 4GB memory, and a RDF-3X 0.3.5 store system. A
Hadoop system is also used to join the intermediate results, which used version 0.20.203 running on
Java 1.6.0. The configuration settings of Hadoop system adopts default values. For all experiments,
we first import the data into computing node by three different partitioning methods and replicate
the triples on boundary by the undirected one-hop and two-hop guarantees. In our experiments, we
choose the benchmark queries, which are provided by LUBM datasets. All experiments are repeated
three times, and average results are reported.

Table II. Statistics of datasets used in experi-
ments.

Dataset #Vertex #Edge

LUBM50 1, 706, 230 6, 888, 642
LUBM2000 66, 059, 204 276, 345, 040
SP2B-100M 548, 826 922, 183
DBLP 166, 801 5, 723, 789
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Figure 3. Running time on different datasets. (a) SP2B-100M; (b) LUBM50; (c) LUBM2000; (d) DBLP.

5.3. Partitioning performance

Figure 3 demonstrates the comparison of runtime in three different partitioning algorithms. We can
draw the conclusion that the running time will increase with the increasing number of partitions.
Moreover, the running time of METIS is obviously higher than the other two algorithms. We believe
that this is firstly because METIS needs to sort the data by the weight of edges, which is an extremely
time-consuming procedure. Secondly, the asymmetric RDF graph prevents large matchings in the
coarsening process, leading to a slow shrink in the number of edges and the size of coarsened graph.
In contrast, LP chooses a vertex randomly instead of a sorting or indexing mechanism. Thus, the
MLP+METIS and the proposed BRGP both outperform METIS substantially on the four datasets.
Although our approach is not superior to the MLP+METIS, it is competitive.

Figure 4 presents the results of memory consumption, where the trends are similar to that of
running time with the increasing number of partitions. As in each level, METIS will store the coars-
ening graph and the mappings relationship of the adjacent level; hence, METIS has the highest
memory consumption. In contrast, the LP does not storage the intermediate results generated in the
coarsening step. Therefore, our approach achieves a superior result to METIS and MLP+METIS.

5.4. Partitioning quality

The results of the edge cut ratio on four datasets are reported in Figure 5. Here, the edge cut ratio
is computed by EC.P //m. Because the density of edge in SP2B-100M is sparser than that of other
three datasets, the results for SP2B-100M are lowest as shown in Figure 5(a). Because of the unequal
relationship among RDF data points, the update rule of MLP+METIS is unsuitable for RDF graph
partitioning. Hence, the edge cut ratio of MLP+METIS is the highest as shown in Figure 5. As the
results show, our approach outperforms METIS and MLP + METIS on all four datasets.
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Figure 4. Memory consumption on different datasets. (a) SP2B-100M; (b) LUBM50; (c) LUBM2000; (d)
DBLP.

Figure 5. Edge cut ratio EC.P /=m on different datasets. (a) SP2B-100M; (b) LUBM50; (c) LUBM2000;
(d) DBLP.
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Table III. Partitioning balance.

METIS MLP+METIS BRGP1 BRGP2

LUBM50 1.02 1.03 1.05 1.03
LUBM2000 1.03 1.03 1.04 1.02
DBLP 1.03 1.03 1.06 1.03
SP2B-100M 1.02 1.03 1.04 1.02

Table IV. The optimized result of datasets.

Dataset #Original vertex #Optimized vertex #Pruning vertex #The rate of decline (%)

LUBM50 1,706,230 1,257,916 448,314 26.8
LUBM2000 66,059,204 50,316,058 15,743,146 21.32
DBLP 548,826 362,225 186,601 34
SP2B-100M 166,801 132,465 34,336 20.59

Table V. The improved ratio by graph optimization.

Edge cut (%) Runtime (%) Memory (%)

METIS MLP+METIS BRGP METIS MLP+METIS BRGP METIS MLP+METIS BRGP

LUBM50 0.28 0.27 0.24 21.33 20.32 22.69 23.56 23.42 22.40
LUBM2000 0.29 0.21 0.27 23.92 24.86 21.32 21.94 20.77 23.57
DBLP 0.23 0.19 0.21 27.05 30.35 32.75 24.04 25.08 23.62
SP2B-100M 0.16 0.12 0.18 17.96 18.51 18.55 19.80 21.75 21.49

The results of partitioning balance are reported in Table III. Although the BRGP1 that with fixed
attenuation factor does not outperform METIS and MLP+METIS, the BRGP2 that with dynamic
attenuation factor performs competitively. The comparisons demonstrate the effectiveness of BRGP
in the balanced partitioning of RDF graph.

5.5. Optimization

Table IV shows the optimized result of datasets, and Table V shows the partitioning performance and
quality for all three methods on four optimized datasets, in which the value indicates the improved
rate. Here, the results are obtained from the experiments on each dataset with eight subsets.

Through the pruning strategy, the number of vertices for partitioning algorithm decrease by 20–
30%. So the running time and memory consumption have an obvious improvement. However, for
these merged vertices, they would be distributed to the same partition whether pruning or not, so the
impact of partitioning quality is less than 0.5%.

5.6. Query processing

Figure 6 shows the comparison of query time on three graph partitioning methods and a hash par-
titioning method, in which Figure 6(a) is a one-hop guarantee in graph partitioning methods and
Figure 6(b) is a two-hop guarantee. Q1, Q3, Q4, Q5, Q6, Q10, Q11, and Q14 are simple benchmark
queries of LUBM, which only consist of subject–subject joins and the maximum path between two
nodes is two. Therefore, the computing nodes can execute queries in parallel without any network
communication. The result shows that there is no obvious difference in the query time on four data
partitioning methods for these simple queries. However, Q2, Q7, Q8, Q9, Q12, and Q13 are com-
plex queries, which have subject–object joins, and the maximum path is over 2. Compared with the
hash partitioning, the graph partitioning methods execute some subject–object joins inside storage
node, which would greatly reduce the communications and improve the query efficiency.
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Figure 6. Query processing time. (a) One-hop guarantee; (b) Two-hop guarantee.

For the three graph partitioning methods, the number of joins among computing nodes decrease
as the number of edge cuts decrease. So the query efficiency in BRGP is better than other two graph
partitioning methods in one-hop guarantee. Nevertheless, the partitioning of two-hop guarantee
makes most joins be executed inside computing nodes, so the query time on three graph partitioning
methods is very little. But the two-hop guarantee stores an extra 20% duplicate triples. Besides, for
the complex query, we can conclude that the graph partitioning is superior to hashing partitioning.

6. CONCLUSION

We presented a balanced RDF graph partitioning algorithm (BRGP) for storing massive RDF data
on cloud, which works in two major steps. Firstly, BRGP uses the gain in modularity as the label
update rule of LP to roughly partition the RDF graph iteratively until the graph is small enough.
Secondly, a balanced adjustment strategy is devised in K-medoids clustering to implement the final
partition on the coarsened graph. Experimental results demonstrate that the label update rule based
on the modularity gain and the label energy function in our approach improved the graph parti-
tioning performance by generating a balanced and low edge cut partitioning scheme in RDF graph.
Furthermore, our scheme is effective to reduce the communication overhead when performing query
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operations among different storage nodes, which is particularly important for cloud storage. For
future work, we would like to investigate the incremental graph partitioning for dynamic RDF data
storage on cloud.
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