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Abstract Recent years have witnessed a surge of interests in cross-modal ranking. To
bridge the gap between heterogeneous modalities, many projection based methods have
been studied to learn common subspace where the correlation across different modalities
can be directly measured. However, these methods generally consider pair-wise relationship
merely, while ignoring the high-order relationship. In this paper, a combinative hyper-
graph learning in subspace for cross-modal ranking (CHLS) is proposed to enhance the
performance of cross-modal ranking by capturing high-order relationship. We formulate
the cross-modal ranking as a hypergraph learning problem in latent subspace where the
high-order relationship among ranking instances can be captured. Furthermore, we pro-
pose a combinative hypergraph based on fused similarity information to encode both
the intra-similarity in each modality and the inter-similarity across different modalities
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into the compact subspace representation, which can further enhance the performance of
cross-modal ranking. Experiments on three representative cross-modal datasets show the
effectiveness of the proposed method for cross-modal ranking. Furthermore, the ranking
results achieved by the proposed CHLS can recall 80% of the relevant cross-modal instances
at a much earlier stage compared against state-of-the-art methods for both cross-modal
ranking tasks, i.e. image query text and text query image.

Keywords Cross-modal ranking · Subspace learning · Hypergraph · Similarity preserving

1 Introduction

Currently, the investigation of multiple views and modalities in computer vision tasks, such
as visual tracking [12–14], object recognition [15, 16, 18, 19], and visual retrieval [21,
32], have attracted many research interests, especially the cross-modal retrieval problem
[10, 36, 42]. The various modal data existing on the Web, such as image, text and video,
provide complementary information to describe the semantics of objects. The ranking of
cross-modal retrieval enhances the results of cross-modal retrieval. For instance, given a
text query, the top-k close images should be returned with their relevance scores in the
descending order or given an image query, the top-k close textual documents should be
returned [26]. Hence, cross-modal ranking is essential for cross-modal retrieval. However,
the heterogeneity gap among different modalities is still a challenging problem for the cross-
modal ranking in distance metric learning. Another main challenge in cross-modal ranking
is how to capture the high-order relationship among samples and use the complementary
intra-modal similarity to enhance cross-modal ranking.

In recent years, a number of studies [3, 34, 37, 38, 50] have been conducted to bridge
the heterogeneity gap between different modalities e.g., text and image. These approaches
can be categorized into two main groups: 1) subspace learning either in unsupervised or
supervised manner, and 2) cross-modal hashing.

Subspace learning methods aim to learn a latent subspace, in which the similarity among
different modalities can be measured directly. The unsupervised subspace learning methods
such as Canonical Correlation Analysis (CCA) [26, 41], Partial Least Squares (PLS) [28],
and Locality Preserving Projections (LPP) [5] map the multimodal data into a common
space in which they are highly correlated. In contrast, the supervised learning methods [25,
54] utilize the class label information to obtain more discriminative subspace. For example,
if two samples have the same class label, their projections should be as close as possible.
Otherwise, if they have different class labels, their projections should be as far as possible
from each other. As the supervised approaches require a number of labeled samples which
are fairly expensive to obtain, the semi-supervised subspace learning using both labeled and
unlabeled data has attracted increasing attention [4, 49].

Cross-modal hashing (CMH) combines the cross-modal analysis and hashing technology
[11, 45, 46, 53]. CMH obtains a unified hash space by learning a set of hashing functions. In
the hash space, Hamming distance of hash codes is used to measure the similarity between
two different modalities. The strength of CMH methods is that they can use a compact code
for multimodal data representation which leads to a low computational complexity. How-
ever, the weakness shared by CMH and subspace learning methods is that they only consider
the pair-wise relationship between two samples, ignoring the high-order relationship among
more than two samples. Generally, we use pair-wise relationship between two items to mea-
sure the relationship of them. However, the high-order relationship presents the relationship
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among more than two items which are connected. For example, pair-wise relationship can-
not define the similarity among three item, it can just describe the closeness of every two
items. However, the high-order relationship defines the closeness of three or more items,
which can facilitate cross-modal correlation learning [40, 43, 48].

To address this issue, hypergraph was proposed to capture the high-order relationship of
samples, which has been widely used in clustering, classification, and information retrieval
tasks [43, 48, 52]. In a hypergraph, an edge connects more than two vertices, thus it can
well encode the relationship among more than two vertices. Existing studies [40, 48] have
shown that the hypergraph is beneficial for multimodal relationship encoding. In this paper,
we formulate the cross-modal ranking as a hypergraph learning problem in a common
subspace. In order to bridge the semantic gap between different modalities, the original
modalities are projected onto a common subspace, where the distance among heteroge-
neous modalities can be measured. Here, Canonical Correlation Analysis (CCA) is utilized
for latent subspace learning. CCA can well preserve the correlations in paired samples,
owning to the computation of maximum correlation coefficient. Then we employ the hyper-
graph learning to compute cross-modal ranking scores in the common subspace. To further
improve the cross-modal ranking performance, a combinative hypergraph is constructed
which takes into consideration both the intra-similarity in each modality and the inter-
similarity across different modalities. Therefore, by performing hypergraph learning in the
subspace, our approach captures not only the pair-wise but also the high-order relation-
ship among ranking objects. Additionally, our method can well preserve the intra-modality
and inter-modality similarities. Extensive experiments are carried out on three cross-modal
datasets, and the results show that the proposed CHLS outperforms the representative cross-
modal ranking methods, such as principal component analysis (PCA), LPP, CCA, semantic
matching (SM) [26], semantic correlation matching (SCM) [26], and the most recent
Collective Matrix Factorization Hashing (CMFH) [1]. CHLS obtains high mean average
precision (MAP) due to the high-order relationship among samples captured by combinative
hypergraph learning in subspace. The main contributions of this paper are summarized as
follows:

(1) We formulate the cross-modal ranking as a hypergraph learning problem in the com-
mon semantic subspace. Different from most of the existing graph based methods,
we explore the hypergraph learning in the common semantic subspace in cross-modal
ranking scenario to capture the high-order relationship. Common subspace learning
is conducted firstly to learn a common semantic space for bridging the heterogeneity
gap among different modalities. By so doing, the correlation of paired samples from
different modalities can be maximized in the expected subspace. To capture the high-
order relationship among more than two samples, we construct a hypergraph based on
the similarity matrix. Then, the ranking scores can be achieved by solving the regu-
larizer on the hypergraph. Experimental results show the effectiveness of investigating
the high-order relationship combined with the pair-wise relationship.

(2) In addition, we propose a combinative hypergraph based on the inter-modality and
intra-modality similarities. By incorporating the intra-modality similarity into the
inter-modality similarity, we can construct a combinative hypergraph to encode the
fused similarity information, which can further enhance the cross-modal ranking
performance.

The rest of this paper is organized as follows. In Section 2, we briefly overview the related
work on subspace learning and cross-modal hashing methods for cross-modal retrieval and
ranking tasks. In Section 3, the proposed CHLS approach is presented in detail. Section 4
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reports the experimental settings and results on three representative cross-modal datasets.
Finally, we conclude our work in Section 5.

2 Related work

Recently, the research of multiple views and modalities in computer vision tasks including
visual tracking, object recognition, and visual retrieval. For example, [12–14] investigate
the fusion of multiple views in the application of visual tracking. In terms of objective
recognition, [15, 16] propose the multiple views fusion at source and feature level to perform
palmprint recognition. Here we mainly focus on the connected work on multi-modal visual
retrieval especially on cross-modal retrieval. Since cross-modal retrieval plays an important
role in various applications, most approaches focused on cross-modal retrieval, but few
considered results ranking. In the following overview, we summarize both representative
approaches in cross-modal retrieval and ranking. Most of the proposed methods can be
categorized into two groups i.e. subspace learning and cross-modal hashing.

2.1 Methods based on subspace leaning

The main challenge in cross-modal retrieval and ranking tasks is how to measure the sim-
ilarity among different modalities due to the heterogeneity gap across them. To address
this challenge, a number of studies have been proposed to learn a common subspace.
Through mapping the original modalities into a common subspace, the semantic gap can
be bridged and the similarity among different modalities can be measured directly by
the distance metric. There are a lot of classicial methods for subspace learning, such as
PCA, LDA, LPP, and 2D random projection [17, 20]. One of the most popular methods
in subspace learning for cross-modal retrieval is CCA [26]. The correlation of projected
modalities in the common subspace can be maximized through CCA. Thus, CCA can
measure the similarity between different modalities, and also can preserve the maximized
pair-wise relationships across modalities, i.e. pair-wise inter-similarities. Another widely
used method is PLS [30]. PLS and CCA both learn transformations to map different
original modalities into a latent common subspace in which the similarity can be com-
puted directly. However, PLS differs from CCA in that PLS is a regression model which
projects data from one modality to another [6]. Wang [31] et al. proposed a graph model
which utilizes the content and semantics similarities as well as the interaction between
different modalities for cross-modal retrieval. Our method mainly differs it in the high-
order relationship capture. In [29], deep canonical correlation analysis with progressive and
hypergraph learning is used for learning the common subspace and performing cross-modal
retrieval. In [37], l21-norms and graph regularization are coupled with a linear regression
to learn projection matrices for mapping different modal data into the common space. With
the coupled items, it can preserve the inter-modality and intra-modality similarities. In
order to find the common structure hidden in different modalities, a compound regulariza-
tion framework was proposed to address pairwise constraint [3]. Furthermore, multimodal
subspace clustering was used to learn the common structure. Different from previous meth-
ods, a supervised consistent feature representation learning method was proposed in [9],
with the capability of dealing with unpaired training samples. A joint graph regularized
multimodal subspace learning approach was proposed in [39] to better explore the cross-
modal correlation and the local manifold structure. The difference between them and the
proposed method is that we construct a combinative hypergraph and the main focus is
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ranking cross-modal query results. In these literatures, a graph regularization is widely
used to preserve the inter-similarities among multimodal features. Unlike these, the pro-
posed CHSL aims at capturing the high-order rather than pair-wise relationship. Moreover,
a combinative hypergraph is constructed to encode the inter-modality and intra-modality
similarities.

2.2 Methods based on cross-modal hashing

Cross-modal hashing is another widely used method for cross-modal retrieval and ranking.
Hash functions are learned to map the original features to a Hamming space. The cross-
modal hashing methods firstly project different modalities into a common Hamming space
with minimizing an loss function. Then, the compact hash codes of cross modalities are
obtained according to the learned linear or nonlinear hashing functions. It can address the
large-scale cross-modal retrieval effectively and efficiently. Most of the cross-modal hash-
ing researches differ in designing different loss functions. Collective Matrix Factorization
Hashing (CMFH) [1] learns a common latent semantic space associated with linear pro-
jections for different modalities by factorizing data matrices jointly under the constraints
of common factor. Cross-View Hashing (CVH) [11] formulates the problem of learning
hashing functions as a generalized eigenvalue problem. Supervised Matrix Factorization
Hashing [22] was proposed to seamlessly integrate semantic labels into the hashing lean-
ing procedure for large-scale data modeling. Joint coupled-hashing [23] was proposed to
firstly learn a embedding for each modality, and then Hamming space is learned through the
embedding with another modality. The weakness of it is that it ignores the common seman-
tics and the high-order relationship among samples. In [47], the Cross-Modal Self-Taught
Hashing (CMSTH) was proposed. In CMSTH, unlabeled data are also used for training
to obtain a better semantic correlation. In [22], a novel cross-modality hashing algorithm
termed Supervised Matrix Factorization Hashing (SMFH) was proposed to tackle the multi-
modal hashing problem where a collective non-negative matrix factorization across various
modalities is performed. Alternating Co-Quantization (ACQ) was proposed to minimize the
binary quantization errors in cross-modal hashing [7]. However, most of the existing cross-
modal hashing methods considered the pair-wise relationships merely. They cannot capture
the high-order relationship among more than two instances. Although the proposed CHLS
in this paper is a real-valued approach based on subspace learning using CCA, it captures
the high-order relationship that can boost the performance of cross-modal ranking.

Besides the subspace and cross-modal hashing based methods, a variety of approaches
are also presented for the cross-modal retrieval problem, such as deep learning based method
[6], graph-based method [45], multi-view method [8], and dictionary based method [49], etc.
In recently, deep learning has drawn considerable interests due to its effectiveness in feature
learning. A slice of methods were proposed based on deep learning [6, 24, 35]. Through
deep learning, the semantic representation can be extracted effectively from the original
modality. Thus, the semantic relationship across different modalities can be measured with
the learned high level semantic representation. To make the cross-modal similarity com-
putable, He et al. [6] proposed a deep and bidirectional representation learning model. Deep
neural network is used to extract the semantic representation from both raw image and text
data. Images and texts are mapped to a common space by passing the networks. CNN and
WCNN were used to learn representations for images and texts, respectively. In [53], a lin-
ear cross-modal hashing method was proposed. It uses k-means clustering to generate a new
k-dimensional representation for each sample. This method can perform cross-modal hash-
ing in a linear complexity. Most of the existing methods can only handle offline cross-modal
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subspace learning or hashing. In order to balance performance and computational complex-
ity, [45] presented an online cross-modal hashing method, which can reduce the complexity
of hash function learning significantly.

Through the overview of previous cross-modal retrieval and ranking methods, we can
find that most of the existing methods fail to capture the high-order relationship among
samples. Furthermore, the similarity preserving should also be considered to enhance the
performance of cross-modal ranking. To this end, the motivations of our work include
capturing the high-order relationship and preserving inter-modality and intra-modality
similarities.

3 Combinative hypergraph learning in subspace

To bridge the heterogeneity gap among different modalities, subspace learning is employed
as the first step in CHLS. Then combinative hypergraph learning is performed on the pro-
jected multimodal data, which takes both intra-modality and inter-modality similarities into
consideration. Finally, we can obtain the cross-modal ranking scores that indicate the rel-
evance of retrieved samples from another modality. The procedure of CHLS is illustrated
in Fig. 1. As shown in this figure, Steps (b), (c), (d), and (e) will be analyzed in this sec-
tion in detail. Feature extraction will be presented in the Section 4 associated with the
description of experimental datasets. The important notations used in this paper are shown
in Table 1.

3.1 Common subspace leaning

The task of cross-modal ranking requires the similarity information among different modal-
ities. However, the similarity cannot be directly measured due to the heterogeneity gap.
Hence, subspace learning methods have been proposed to learn a latent common subspace
for bridging such heterogeneity gap. Thus, the similarities among various modalities can
be computed directly. In this paper, a common subspace of two modalities (e.g., image and
text) is learned firstly. Here, canonical correlation analysis (CCA) is utilized for common
space learning. Given a pair of samples, CCA yields the maximal correlation between them.
Please refer to [41] for more details on CCA.

Formally, given a set of pairs {xi , yi}ni=1, xi ∈ �d1 , yi ∈ �d2 , d1 �= d2, we cannot
compute the similarity between xi and yi directly. CCA aims to find projections for two

Fig. 1 The procedure of the proposed CHLS for cross-modal ranking. a the cross-modal multimedia
datasets, b feature extraction from the images and texts, c cross-modal common subspace learning using
CCA, d combinative hypergraph learning, and e cross-modal ranking
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Table 1 Important notations
used in this paper Notation Definition

{xi , yi} The i-th cross-modal pair

n The size of cross-modal pairs

d1, d2 The dimensions of given modality {xi , yi}
d The dimension of common subspace

k The number of k-nearest neighbors

Sxy Inter-modality similarity

Sxx Intra-modality similarity

Dv The diagonal matrix whose diagonal entries

are the degrees of vertices

De The diagonal matrix whose diagonal entries

are the degrees of hyperedges

W The diagonal matrix of the hyperedge weights

H The incidence matrix

� The hypergraph Laplacian

μ Tradeoff parameter

q Initial ranking scores

f The ranking scores vector

θ Modality balance parameter

vectors xi and yi that can obtain the maximal correlation. The projected data can be denoted
as WT

x x and WT
y y, and the correlation can be stated as:

ρ = WT
x �xyWy√

WT
x �xxWxWT

y �yyWy

(1)

where �xx and �yy are the within-sets covariance matrices, �xy = �yx are the between-sets
covariance matrices, and Wx, and Wy are the projection matrices, which can be obtained
by optimizing the following maximization problem:

max
Wx,Wy

WT
x �xyWy

s.t.WT
x �xxWx = 1;WT

y �yyWy = 1 (2)

The optimization in (2) can be transformed into a generalized eigenvalue problem. Thus,
for each pair in {xi , yi}ni=1, the projected representations in the subspace can be stated as
{WT

x xi , WT
y yi}ni=1, where WT

x xi ∈ �d and WT
y yi ∈ �d are the subspace representations of

samples xi and yi .
For convenience, let x′ = WT

x x, and y′ = WT
y y denote the projected data from two

modalities, where x′ ∈ �n×d , and y′ ∈ �n×d . In the following step, the projected data will
be used for combinative hypergraph learning.

3.2 Hypergraph learning for ranking

Most of the existing latent subspace learning methods consider only the pair-wise rela-
tionship between two samples, but ignore the high-order relationship. The high-order term



Multimed Tools Appl

describes relationship among more than two samples. For instance, the pair-wise similarity
shows two close objects, while high-order relationship gives three or more close objects.
Obviously, modeling the high-order relationship among objects can improve the ranking
performance significantly, and also can return the most relevant samples to image or text
query.

Let G = (V ,E,w) represent a hypergraph with the vertex set V , hyperedge set E, and
the hyperedge weight vector w. In G, a hyperedge ei connects more than two vertices. An
incidence matrix H ∈ {0, 1}|V |×|E| is used to demonstrate a hypergraph, where the entry
H(v, e) = 1 if v ∈ e, and H(v, e) = 0 otherwise. Based on H , the degree d(v) of a vertex
v ∈ V and the degree δ(e) of a hyperedge e ∈ E are defined as d(v) = �e∈Ew(e)H(v, e)

and δ(e) = �v∈V H(v, e), respectively [48]. Let Dv and De denote the diagonal matrices
whose diagonal entries are the degrees of vertices and hyperedges, respectively. We also
define W as a diagonal matrix whose diagonal entries are the hyperedge weights.

Given a hypergraph, the ranking scores can be obtained by optimizing the following
objective function [48]:

�(f ) = 1

2

∑
e∈E

∑
u,v∈V

w(e)H(u, e)H(v, e)

δ(e)
×

(
f (u)√
d(u)

− f (v)√
d(v)

)2

+μ
∑
u∈V

(f (u)−q(u))2

(3)
where μ is the tradeoff parameter, q is the initial ranking scores, and f is a vector denoting
the final ranking scores. We can define � = D

−1/2
v HWD

−1/2
e HT D

−1/2
v , then the hyper-

graph Laplacian can be represented as � = I−�. Finally, the normalized objective function
can be rewritten as:

�(f ) = f T �f + μ(f − q)T (f − q) (4)

By differentiating �(f ) with respect to f , the ranking scores can be computed as
follows:

f =
(

μ

μ + 1

) (
I − 1

μ + 1
�

)−1

q (5)

3.3 The proposed CHLS

In this subsection, we present combinative hypergraph learning in subspace for cross-modal
ranking. In Section 3.2, we have introduced hypergraph learning for computing ranking
scores. Hence, we need to construct a hypergraph for learning cross-modal ranking scores
and capturing high-order relationship among samples.

After the projection of CCA, the projected data x′, y′ of x, y are obtained. To improve
the performance of cross-modal ranking, we take both intra-modality similarity and inter-
modality similarity into consideration. These two types of similarities are used to construct
a combinative hypergraph. Therefore, the constructed hypergraph carries both cross-modal
and within-modal information.

For example, given a paragraph of text description on ‘cat’, we aim to search the most rel-
evant ‘cat’ images. This can be achieved by inter-modality similarity information. However,
it is not enough to consider the inter-modality similarity only while ignoring the similar-
ity information inside the queried image database. If we complement the images that are
close to the returned images from cross-modal retrieval to the final image set, we can obtain
complementary and more relevant ‘cat’ images.
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From the hypergraph learning cost function in (3), we can see that the hyperedge weight
vector w should be initialized with reasonable value according to the rules utilized in [51].
The similarity matrix of intra-modality is computed as follows:

Sxx(i, j) =
⎧
⎨
⎩

exp

(
−‖vi−vj‖2

σ 2

)
, if i �= j

0. else
(6)

where vi, vj ∈ x′, σ is the median distance of all vertices. Sxx is the similarity information in
modality x′. Similarly, Syy denotes the similarity information in modality y′ with vi, vj ∈ y′.
For the correlation between x′ and y′, we define Sxy = ST

yx as the cross-modality similarity
under the condition of vi ∈ x′, vj ∈ y′.

To construct a combinative hypergraph, we utilize the cross-modal and intra-modal sim-
ilarity matrices Sxx, Syy and Sxy. Given a query from modality x, the combinative similarity
matrix can be obtained as:

Sx = θ ∗ Syy + (1 − θ) ∗ Sxy (7)

where θ represents the importance of modality y, which is used to balance the contribution
of inter-modality similarity and intra-modality similarity in constructing combinative simi-
larity matrix. Similarly, given a query from modality y, the combinative similarity matrix is
computed as:

Sy = θ ∗ Sxx + (1 − θ) ∗ Syx (8)
In our work, each hyperedge consists of each vertex and its k nearest neighbors according

to Sx or Sy. Then we can derive the hyperedge weight of each edge as:

w(ei) =
∑
vj ∈ei

S(i, j) (9)

Given a query from the original modality x or y, the cross-modal ranking scores can be
calculated by (5).

3.4 Algorithm and implementation

The whole algorithm is summarized in Algorithm 1. Common subspace learning is per-
formed in Steps 1 and 2. We use CCA to project the original cross-modal data into a
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common latent subspace, where the dimensionalities of different modalities are equal,
which results in a directly similarity measurement as described in Step 3. In order to con-
struct the combinative hypergraph, we first conduct a similarity fusion as Step 4. Then,
in the combinative hypergraph learning, we take the inter-modality similarity and intra-
modality similarity into consideration by computing the combinative similarity matrix with
a balancing parameter θ . Subsequently, in Steps 5-7, a hypergraph is constructed based on
the combinative affinity matrix computed in Step 4. In this paper, we use k-nearest neigh-
bors to generate the hyperedges, which is a widely used method in the construction of
hypergraph. Finally, cross-modal ranking can be performed by given queries as illustrated
in Step 8.

3.5 Complexity analysis

The computational cost of the proposed CHLS model consists of three parts: 1) common
subspace learning, 2) combinative hypergraph learning, and 3) ranking. In the common
subspace learning phase, the computational cost of CCA is O

(
nη2 + η3

)
[27], where

η = max (d1, d2), O
(
nη2

)
denotes the cost of computing the covariance matrices,

and O
(
η3

)
represents the cost of matrix multiplication, inverse and eigenvalue decom-

position. We can see that, the complexity depends on the maximal dimensionality of
input modalities. After the preparation of original data such as feature extraction and
dimensionality reduction, the cost of common subspace learning will be reduced due
to a small η. The complexity of combinative hypergraph learning is O

(
n2

)
. From the

procedure in Algorithm 1, the time complexity of CHLS is dominated by the cross-
modal ranking i.e. the problem in (5) which leads to a cost of O

(
n3

)
. Fortunately, we

can adopt an iterative method to solve (5) which can reduce the computational cost to
O

(
n2

)
[2].

3.6 Extension to out-of-sample problem

Although we mainly focus on cross-modal ranking in this paper, many extensions of this
basic idea are possible. Cross-modal ranking re-ranks the relevance scores of the correlated
samples from another modality in the database. It also can be extended to the cross-modal
retrieval with the new query which is not in the database. Firstly, we can find the most sim-
ilar sample in the database according to intra-modality similarity. We then use the selected
sample as a query to perform a cross-modal ranking. Finally, it is straightforward to adapt
Algorithm 1 presented above to solve the new cross-modal retrieval problem, and the rank-
ing results can be returned to an out-of-sample query easily. The extension to out-of-sample
instances is illustrated in Algorithm 2.
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4 Experiments and results analysis

In this section, we carry out experiments to evaluate the proposed method in this paper. The
three benchmark datasets used in the experiments are introduced firstly. Next, the evalu-
ation metrics and implementation settings are described. We then present and analyze the
performance of all the methods. Finally, the parameter sensitivity is further investigated.

4.1 Datasets

The Wiki image-text dataset [26], which contains 2866 pairs of image and text is utilized to
evaluate the effectiveness of the proposed CHLS. These pairs are classified into 10 classes.
We randomly select 2150 pairs for training, and the remained 716 for testing. For each
sample in the image modality, we use the Convolutional Neural Networks [33] to extract
a 4096-dimensional feature vector. Then principal component analysis (PCA) is performed
on the 4096-dimensional vector to remove the redundancy, which leads to a compact 128-
dimensional feature vector as the representation of each image. For each instance in the text
modality, LDA model and PCA are applied for learning a 100-dimensional representation.

The MIR Flickr dataset consists of 25000 images along with the assigned tags. We prune
the original MIR Flickr by selecting the images annotated by at least one tag, which leads
to a new dataset with 24 classes. We randomly take 12054 samples for training, and the
remained 8460 instances for testing. Similarly, the image modality representation is a 128-
dimensional vector, and the text modality representation is a 100-dimensional topic feature
vector.

The Pascal VOC dataset contains 1000 image-text pairs, which can be categorized into
20 different categories. We randomly select 400 pairs of image-text to construct training set,
and the rest 600 pairs for testing set. The representation of each modality is similar to Wiki
image-text and MIR Flickr as mentioned above.

4.2 Evaluation metrics

Mean average precision (MAP) is employed as the performance measurement. MAP is the
mean of average precision (AP). Additionally, we evaluate the precision and recall through
the precision-scope and recall-scope curves, which can reveal the performance of cross-
modal ranking remarkably.

4.3 Experimental settings

We compare the proposed CHLS against several representative state-of-the-art methods,
such as CCA [26], PCA [44], LPP [5], SM [26] and SCM [26] for cross-modal ranking in
terms of Image query and Text query. Three distance metrics, normalized correlation (NC),
L2 distance, and Kullback-Leibler divergence (KL) are used in the first set of experiments.
The computational formulas are stated in (10–12), where x and y are two vectors. Addition-
ally, we compare our method against the cross-modal hashing method CMFH [1], in which
the hamming distance (HD) is used to measure similarity. Then, the one with the best per-
formance in the first set of experiments is used in the other experiments. The parameters in
the proposed CHLS are set empirically. In detail, the k-nearest parameter k is set to 5, μ

is set to 0.9, and the modality importance parameter θ is set to 0.2. Since the dimension of
subspace cannot be fixed for various query tasks and distance metrics, d is set to the best
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empirical value. In addition, the whole experiments results in this paper are obtained on the
testing set. That is to say, we perform cross-modal retrieval and ranking in the testing set to
validate the effectiveness of the proposed method compared against other approaches.

DNC(x, y) = −xyT

‖x‖ ‖y‖ (10)

DL2(x, y) = ‖x − y‖2 (11)

DKL(x, y) =
∑

i

x(i) log
y(i)
x(i)

(12)

4.4 Performance of cross-modal ranking

4.4.1 Results on WiKi dataset

Table 2 reports the MAP scores of the compared methods and the proposed CHLS with
different distance metrics on the Wiki dataset. As shown in Table 2, the proposed CHLS
significantly outperforms the competitors that thanks to the computation of cross-modal
ranking scores in the common subspace which bridges heterogeneity gap. CHLS performs
better than CCA, SM and SCM with the consideration of both intra-similarity and inter-
similarity information. Another reason is that our CHLS captures the high-order relationship
among more than two samples rather than just pair-wise relationship. In general, CCA, SM,
and SCM are superior to PCA and LPP. The reason is that different from PCA and LPP,
CCA, SM, and SCM obtain the maximized cross-modal correlation between paired sam-

Table 2 Performance
comparison of MAP on the Wiki
dataset

Methods Distance metric Image query Text query

CCA [26] NC 0.3245 0.2841

L2 0.2886 0.2483

KL 0.1672 0.1509

PCA [44] NC 0.1451 0.1140

L2 0.1433 0.1287

KL 0.1237 0.1186

LPP [5] NC 0.1414 0.1178

L2 0.1426 0.1219

KL 0.1216 0.1155

SM [26] NC 0.4594 0.3968

L2 0.3958 0.3909

KL 0.3677 0.3768

SCM [26] NC 0.3603 0.3291

L2 0.3225 0.3224

KL 0.3000 0.3149

CMFH [1] HD 0.2183 0.2278

CHLS NC 0.1601 0.1893

L2 0.3458 0.3683

KL 0.6447 0.5941
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ples, which is more effective for reducing the heterogeneity gap. CMFH also achieves the
better performance than PCA and LPP, due to the common semantics learning. In addition,
we can observe that the proposed CHLS obtains the best performance with the KL dis-
tance metric. Thus, in the following experiments, the KL distance metric is used to measure
similarity.

The precision-scope (a-b) and recall-scope (c-d) curves of different methods on the
Wiki dataset are shown in Fig. 2, in which the precision value is obtained based on the
best performance parameter setting in Table 2. The scope is specified by the number
(scope = 10 to 710) of top-ranked samples returned to retrieval. As shown in Fig. 2a–
b, the proposed CHLS achieves better performance on precision of both image query
and text query, indicating that the top-scope samples in cross-modal ranking results of
CHLS are more relevant to the given query sample. Additionally, we can see that for
both image query and text query, the proposed CHLS recalls 80% relevant instances
in a small scope, while its counterparts recall 80% relevant instances with much larger
scopes. It demonstrates that the proposed CHLS significantly outperforms the other meth-
ods in cross-modal ranking. This is because CHLS not only performs cross-modal subspace
learning, but also incorporates the intra-modality and inter-modality similarities into the
learning of combinative hypergraph. Furthermore, hypergraph captures the high-order rela-
tionship among more than two instances, which further enhances the cross-modal ranking
performance.
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Fig. 2 Precision-scope curves (a–b) and recall-scope curves (c–d) of the proposed CHLS and its competitors
on the Wiki dataset for both cross-modal ranking tasks i.e. Image query and Text query with scope = 10
to 710
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4.4.2 Results on MIR Flickr dataset

The MAP scores obtained by PCA, LPP, CCA, SM, SCM, CMFH, and CHLS on the MIR
Flickr dataset are shown in Table 3. It can be seen that, the proposed CHLS substantially
outperforms the other counterparts. The results similar to those on the Wiki dataset are
achieved. We also can observe that, PCA and LPP still obtain the poor performance on cross-
modal ranking. It demonstrates that, reducing the dimensionality of different modalities to a
same value is not beneficial to bridging the heterogeneity gap. The reason is that they ignore
the correlations of different modalities. In contrast, CCA, SCM, SM, and CHLS that learn a
common subspace by encoding the cross-modal correlation into it achieve consistent better
performance than PCA and LPP in cross-modal ranking. The proposed CHLS and SCM
perform better than CCA, which shows the effectiveness of exploiting additional cross-
modal correlation in the latent subspace learned by CCA. Furthermore, the proposed CHLS
achieves the best performance compared against SM, SCM, and CMFH, demonstrating that
the method proposed in this paper by constructing a combinative hypergraph which takes
inter-modality similarities and intra-modality similarities into consideration is beneficial for
cross-modal ranking.

The corresponding precision-scope (a-b) and recall-scope (c-d) curves for cross-modal
ranking tasks i.e. image query and text query are plotted in Fig. 3. The precision and recall
are obtained with varied scope from 10 to 8410. We can see that, the proposed CHLS con-
sistently achieves the better performance than PCA, LPP, CCA, SM, SCM, and CMFH for
both precision and recall in the cross-modal ranking tasks. As shown in Fig. 3c–d, we can
see that the recall of the proposed CHLS increases dramatically, reaching 80% at a small
scope 2300 (27% of dataset scale) for both cross-modal ranking tasks i.e. image query and
text query, while PCA, LPP, CCA, SM, SCM, and CMFH increase gradually. Thus, our
proposed CHLS can return more relevant cross-modal ranking instances within a small top
scope that can be beneficial to multimedia retrieval across multiple modalities. Specifically,
users of commercial browsers who mainly focus on the top 10 or 20 results would prefer
to use the proposed CHLS for cross-modal multimedia retrieval with high MAP score and
recall.

4.4.3 Results on Pascal VOC dataset

The MAP scores of PCA, LPP, CCA, SM, SCM and CHLS on the Pascal VOC dataset
are reported in Table 4. The proposed CHLS achieving MAP scores of 0.4303 and 0.4378
for image query and text query, respectively, is superior to PCA (MAP scores of 0.0802
and 0.0659), and LPP (MAP scores of 0.0714 and 0.0676) by exploiting the correlation

Table 3 Performance
comparison of various
approaches on the MIR Flickr
dataset

Methods Image query Text query Average

PCA [44] 0.1624 0.1662 0.1643

LPP [5] 0.1436 0.1501 0.1469

CCA [26] 0.2440 0.2483 0.2462

SM [26] 0.3218 0.3091 0.3155

SCM [26] 0.2724 0.2598 0.2661

CMFH [1] 0.2183 0.2278 0.2231

CHLS 0.6501 0.7381 0.6941
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Fig. 3 Precision-scope curves (a–b) and recall-scope curves (c–d) of the proposed CHLS and its competitors
on the MIR Flickr dataset for both cross-modal ranking tasks i.e. Image query and Text query with scope =
10 to 8410

of different modalities. CHLS also outperforms CCA (MAP scores of 0.2585 and 0.2437),
which demonstrates the effectiveness of encoding high-order relationship into the cross-
modal correlation by learning a hypergraph in the common subspace projected by CCA.
CHLS not only captures the high-order relationship, but also preserves the inter-modality
and intra-modality similarities by constructing a combinative hypergraph. Therefore, we
can see that CHLS achieves better MAP scores compared to SCM. As reported in Table 4,
the MAP score of SM for image query is slightly better than our CHLS. However, for text
query, our CHLS outperforms all the other competitors, and obtains the comparable average

Table 4 Performance
comparison of various
approaches on the Pascal VOC
dataset

Methods Image Query Text Query Average

PCA [44] 0.0802 0.0659 0.0731

LPP [5] 0.0714 0.0676 0.0695

CCA [26] 0.2585 0.2437 0.2511

SM [26] 0.4440 0.4273 0.4357

SCM [26] 0.3105 0.2895 0.3000

CMFH [1] 0.3821 0.3798 0.3810

CHLS 0.4303 0.4378 0.4341
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MAP to SM. This may because the scale of testing data is small. In addition, our CHLS still
outperforms the most recent cross-modal hashing method CMFH.

The precision-scope (a-b) and recall-scope (c-d) curves of different approaches on the
Pascal VOC are shown in Fig. 4. From the precision-scope curves in Fig. 4a–b, we can see
that the precision of our proposed CHLS is slightly superior to that of SM, and both of
them outperform the other methods. The trend of recall curves of the proposed CHLS is
similar to SM. However, the recall of CHLS is slightly worse than SM when the scope is
greater than 150. This is because the proposed CHLS mainly uses the k-nearest neighbors to
construct hyperedges, thus very few samples will be regarded as irrelevant ones. Therefore,
from Figs. 2c–d, 3c–d and 4c–d, we can see that the proposed CHLS obtains a desirable
high recall at an early stage with a small scope and then keep steady for a long scope.
Although our CHLS cannot always outperforms the compared methods regarding to recall-
scope curves, however, it recalls the 80% relevant samples at a much earlier stage than
others.

Therefore, we can conclude that preserving the correlation of different modalities in
the latent subspace will be beneficial to bridge the heterogeneity gap. Second, exploit-
ing high-order relationship among ranked instances by hypergraph learning contributes to
cross-modal ranking. Third, it is useful for integrating intra-modality and inter-modality
similarities to construct a combinative hypergraph, which further improves the cross-modal
ranking performance.
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Fig. 4 Precision-scope curves (a–b) and recall-scope curves (c–d) of the proposed CHLS and its competitors
on the Pascal VOC dataset for both cross-modal ranking tasks i.e. Image query and Text query with the scope
= 10 to 600
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4.5 Parameter sensitivity

We also investigate the effects of different parameters. In the proposed model, there are three
parameters should be determined, i.e., the number of nearest neighbors k, the dimension
of learned common subspace d, and the tradeoff parameter θ . Here, we test the sensitivity
of parameters k and d in CHLS on the Wiki dataset. Parameter k varies from 5 to 30 with
a step of 5, and d increases from 10 to 100 with a step of 10. The cross-modal ranking
MAPs are plotted in Fig. 5. We can observe that CHLS always obtains the highest MAP in
varied subspace dimensionalities with different distance metrics when k = 5. The results
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Fig. 5 Experimental results of the sensitivity of parameters k and dimension of subspace d. The left column
shows results of Image Query, and the right column shows results of Text Query. From the first row to the
third row, KL, NC and L2 distance metric is used, respectively
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Fig. 6 Investigation of the effect of modality balance parameter θ

demonstrate that we can fix k = 5 in the CHLS model that can achieve promising high
MAP for cross-modal ranking. This may mainly due to the fact that if k is too small, several
relevant samples cannot be included into a hyperedge. If it is too large, many irrelevant
sample would be included into a hyperedge which degrades the correlation among relevant
samples. Hence, we can see that the performance decreases with the increasing of k.

For parameter d, we observe that the performance of our method has several fluctua-
tions. This is because different dimensions of common subspace influence the manifold
and correlation preserving and also the discriminative power of subspace representation
in that common subspace. This may be caused by the subspace learning algorithm CCA,
which aims at maximizing the correlation. However, the results also show that the selec-
tion of distance metric influences the optimal dimension of subspace. To the best of our
knowledge, there have been few researches that tackle the problem of how to determine the
optimal dimension of common subspace. Although the best performance of image query
and text query are obtained with different values of d, we can always find a common d
which is highly desirable for both image query and text query, such as d = 50 in Fig. 5a–b,
d = 100 in Fig. 5c–d, and d = 70 in Fig. 5e–f. In our work, empirical values of subspace
dimensionality are selected based on the distance metric.

In terms of the tradeoff parameter θ , the effects of θ on three datasets are shown in Fig. 6.
Generally, we can see that it obtains inferior performance when θ = 0 or θ = 1. This may
be caused by the consideration of only one similarity information in the combinative hyper-
graph learning. Hence, the results show the effectiveness of fused similarity. In addition, we
can observe that the performance is insensitive to the value of θ when 0 < θ < 1.

5 Conclusion

In this paper, we have proposed a novel approach based on combinative hypergraph learning
in subspace for cross-modal ranking. In order to bridge the heterogeneity gap of differ-
ent modalities, we firstly introduced common subspace learning based on CCA, which can
preserve the maximal correlation in projected common subspace. Subsequently, the com-
binative hypergraph learning is performed for two cross-modal ranking tasks i.e. image
query and text query. Experimental results have demonstrated the effectiveness of the pro-
posed CHLS which exploits the high-order relationship and takes both intra-modality and
inter-modality similarities into consideration. We can conclude that exploiting high-order
relationship by hypergraph and considering intra-modality and inter-modality similarities
are beneficial to cross-modal ranking, with 80% relevant instances returned at a much ear-
lier stage compared against state-of-the-art methods. Our future work aims at generalizing
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our method to achieve not only ordinary cross-modal task but also for the scenario with
unequal numbers of samples from different modalities.
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