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Abstract: Cross-modal hashing has received widespread attention due to the high retrieval efficiency, which plays an extremely
important role in cross-modal retrieval. Recently, many cross-modal hashing methods have been proposed to establish the seman-
tic connection of different modalities. However, most of these methods only use a simple quantization strategy, resulting in large
quantization error and inferior hash codes. To address this issue, in this paper, we propose a novel Self-Taught Cross-Modal
Hashing (STCMH) to minimize the semantic encoding loss. In particular, the common semantic representations across different
modalities are firstly learned based on collective matrix factorization. Then the quantization procedure based on orthogonal trans-
formation is integrated to encode the semantic representations into discriminative binary codes. Moreover, similarity preservation
is imposed to further boost the discriminative power. Finally, hashing functions learning is formulated as a binary classification
problem by self-taught scheme. Experimental results on three public datasets demonstrate that STCMH significantly outperforms
most state-of-the-art cross-modal hashing methods.

1 Introduction

During the past decades, multimedia data have been growing dra-
matically on Internet and social websites. The considerable volume,
high dimensionality, and various modalities of these data make it
challenging to perform multimedia retrieval, especially the cross-
modal retrieval that mainly concerns the query of using samples
from one modality such as image to search relevant instances from
another modality such as text. A number of researchers have devoted
to cross-modal retrieval [1–3], which have witnessed great suc-
cess. However, the searching and storage costs of most cross-modal
retrieval methods are prohibitively high in the case of large-scale and
high-dimensional datasets [4–6]. Fortunately, hashing is exploited as
an effective solution for low storage and fast search [7], which has
been successfully applied to computer vision [8] and image retrieval
[9, 10] tasks.

Inspired by this, some researchers integrate hashing with cross-
modal retrieval, named as cross-modal hashing, to transform high-
dimensional data of different modalities into compact binary codes
while preserving the manifold structure of original data. However,
due to inconsistent feature dimensions and semantic gaps between
different modalities, the design of cross-modal hashing methods
is still a significant challenge. Most previous cross-modal hashing
approaches [11–13] concentrate on finding a common Hamming
space, where the cross-correlation among different modalities can
be directly measured using linear or nonlinear projection. The cross-
modal retrieval can be performed effectively in the Hamming space
by bit XOR operation, which significantly reduces the computa-
tional complexity [17]. In addition, the storage cost of binary codes
has also been highly compressed compared with the original high-
dimensional data. Therefore, the large-scale and high-dimensional
data can be handled effectively by cross-modal hashing.

Recently, more cross-modal hashing approaches have been pro-
posed to bridge the semantic gap across different modalities, and
impressive success has been achieved [14–19]. According to the
utilization of label information, they can be classified into unsuper-
vised methods and supervised methods. Unsupervised cross-modal
hashing methods [14–16] only utilize co-occurrence information of
training data to mine the latent semantic concept of different modal-
ities. For example, Latent Semantic Sparse Hashing (LSSH) [14]

uses matrix decomposition and sparse coding to learn latent seman-
tic representations and then integrates them into a joint abstraction
space. Collective Matrix Factorization Hashing (CMFH) has been
proposed in [15] which learns a unified hash code for different
modalities of the same object by matrix factorization. Different from
unsupervised methods, the supervised cross-modal hashing methods
[17–19] exploit label information to preserve semantic similarity.
Thus they generally can effectively solve the semantic gap and get
better results. For instance, Supervised Matrix Factorization Hashing
(SMFH) [17], which is an extension of CMFH, considers preserving
similarity information by taking advantage of available labels. The
results of SMFH are significantly superior to that of CMFH.

However, a common limitation shared by most of the existing
unsupervised and supervised methods is that they generate the binary
codes using only a simple thresholding strategy. It will lead to a
large quantization error and decrease the discriminative ability of the
learned binary codes [6, 20]. Because the optimization of learning
hash codes with binary constraints is NP-hard [11, 21], most of the
previous methods disregard the binary constraints to learn a contin-
uous representation. Then, a simple thresholding strategy is adopted
to the continuous representation for generating binary codes. Such
scheme results in a large quantization loss of the continuous repre-
sentation and decreases the discriminative power of binary codes. In
[22, 23], the authors employed the sigmoid or tanh relaxation instead
of the sign function to avoid the large quantization loss. And the
results in [22, 23] show that reducing quantization error can exactly
improve the quality of hash codes in spite of the high computational
cost of them for large-scale data [6].

In this paper, we put forward an effective Self-Taught Cross-
Modal Hashing (STCMH) method. The motivation of our work is to
reduce the quantization error and learn more discriminative binary
codes to further improve the cross-modal retrieval performance. We
mainly focus on minimizing the encoding loss of common semantic
representations. In addition, we consider the semantic consistence of
samples from different modalities. The samples that are from differ-
ent modalities and describe the same object should be close to each
other in the expected space, and vice versa. The whole framework
of the proposed STCMH consists of two phases, namely offline and
online process, as illustrated in Fig. 1. The offline process, which
aims at generating binary hash codes for the database and learn-
ing hashing functions for out-of-sample data, includes the following
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Fig. 1: The whole framework of the proposed STCMH.

three steps. Firstly, to extract common semantic information, the
features from different modalities are jointly projected into latent
semantic space using collective matrix factorization. Secondly, the
binary quantization loss is minimized by orthogonal transformation,
thus samples of the same class could be further converted to sim-
ilar binary codes. Moreover, the similarity preservations including
intra-modal and inter-modal similarities are taken into considera-
tion by leveraging local geometric structure and label information,
respectively. Thirdly, motivated by Self-Taught Hashing (STH) [24],
hashing functions learning is formulated as a binary classification
problem. A set of classifiers are trained based on training data and
the learned binary codes. In the online process that performs query
encoding and searching, the binary codes of out-of-sample data can
be generated directly by the hashing functions. Therefore, cross-
modal retrieval can be easily conducted based on the binary codes
by Hamming distance.

The major contributions of this paper can be summarized as
follows:

• We put forward a novel self-taught cross-modal hashing method
that combines the semantic feature learning and the binary quantiza-
tion process to project the original data from different modalities
into the common low-dimensional Hamming space with minimal
semantic loss.
• The binary codes learning for out-of-sample data is formulated as
a binary classification problem. Different from existing methods that
learn linear or nonlinear projections, our method takes advantage
of SVM classifier to generate more discriminative binary codes and
further reduce the quantization error.
• Extensive experiments are conducted on three datasets to evaluate
the effectiveness of the proposed method. Experimental results show
that our method outperforms several state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 gives
a brief introduction to the related work. The proposed method is
presented in details in Section 3. Section 4 reports the experimen-
tal results on three datasets. Finally the conclusions are given in
Section 5.

2 Related work

Many cross-modal hashing approaches have been proposed in recent
years. They can be separated into unsupervised, pairwise-based, and
supervised approaches.

The first class is unsupervised cross-modal hashing [11, 14, 15,
25–27], which is widely applied without any prior knowledge. Typ-
ically, it only makes use of features from various modalities to learn
a common space where their correlations are maximized. The exten-
sion of Spectral Hashing (SH) [21], called Cross-View Hashing
(CVH) [11], learns hashing functions with a generalized eigenvalue
formulation. Song et al. put forward Inter-Media Hashing (IMH)
[25] to learn hashing functions by linear regression while taking into
account both intra-media and inter-media consistency. To improve
training efficiency for large-scale multi-modal data, a new model
named Linear Cross-Modal Hashing (LCMH) [26] was proposed
to shorten the training process to linear time. LCMH also takes
inter-similarity and intra-similarity into consideration, which makes
generated hash codes more effective and achieves better retrieval
performance in large-scale datasets. The aforementioned methods
generate two hash codes that correspond to instances from two
different modalities, respectively, which may cause ambiguity. To
alleviate this problem, several methods that learn unified codes for
different modalities, such as CMFH [15], LSSH [14], and C-JMFH
[27] have been proposed. With the assumption of identical binary
codes generated by different modalities, Collective Matrix Factor-
ization Hashing (CMFH) [15] introduces collective matrix factor-
ization into cross-modal domain for the first time and improves the
retrieval accuracy effectively. Similarly, Cluster-based Joint Matrix
Factorization Hashing (C-JMFH) [27] integrates the cross-modal
cluster representation into the joint matrix factorization process with
the constraint of generating unified hash codes. It simultaneously
calculates intra-modal, inter-modal, and cluster-based similarities.
Besides, Latent Semantic Sparse Hashing (LSSH) [14] captures the
latent representations from text and image by matrix factorization
and sparse coding, respectively. Then, the latent representations are
combined to learn a unified binary hash codes.

The second category is pairwise-based cross-modal hashing [12,
28–31], which can take advantage of similar or dissimilar pairs in
training data and then better common space can be learned. One of
the earliest proposed methods in the field of cross-modal hashing
is Cross-Modal Similarity Sensitive Hashing (CMSSH) [28] which
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learns two hashing functions for different modalities by standard
AdaBoost algorithm. Nevertheless, it only uses the similar pairs and
dissimilar pairs between various modalities. Thus, the intra-modal
similarity is not considered. To address this issue, an approach [29]
based on coupled siamese networks is presented to jointly integrate
intra-modal and inter-modal similarity, called MM-NN. Zhen et al.
presented Co-Regularization Hashing (CRH)[12] that studies hash-
ing functions learning based on a boosted co-regularization frame-
work. They also introduced a probabilistic model [30] to generate
hash codes while preserving intra-modal and inter-modal similari-
ties. In [31], Quantized Correlation Hashing (QCH) integrates both
hashing functions learning and binary codes generation into a single
objective function for multi-modality data, where only similar pairs
are concerned, which belongs to the weakly supervised case.

The last category involves supervised cross-modal hashing
approaches [4, 17, 32, 33] that exploit additional label information
to yield better retrieval performance. Semantic Correlation Max-
imization (SCM) [32] seamlessly integrates semantic labels into
the hashing functions learning with linear-time complexity. In [17],
Supervised Matrix Factorization Hashing (SMFH) extends CMFH to
a supervised learning framework, which preserves intra-modal simi-
larity with local structure of data and inter-modal similarity by label
information and has achieved promising results. Based on multi-
modal dictionary learning, Wu et al. proposed a hashing method
named sparse multi-modal hashing (SM2H) [4] which adopts the
hypergraph to build the correlations across multi-modal data, and
then imposes it on dictionary learning, thus the sparse codesets
generated by a hashing scheme can maintain inter-similarity across
different modalities and intra-similarity in each modality simulta-
neously. Semantic Boosting Cross-Modal Hashing (SBCMH) [18]
focuses on reducing the semantic gap and transforms original data
into the semantic representations by multi-class logistic regression.
Then weak classifiers and strong classifiers are used to learn hashing
functions and binary hash codes, which further enhances semantic
consistency.

Motivated by the excellent results of [14, 15, 17], we make further
efforts to explore a novel hashing method with minimal seman-
tic loss. Compared with them, our method can not only capture
latent semantic information, but also make encoding quantization
loss minimized.

3 Proposed method

The details of the proposed STCMH are described in this section. For
simplifying the presentation, we restrict the discussion of STCMH to
the most common two modalities, i.e., image and text. Note that our
STCMH can be further extended to the multi-modal scenario.

3.1 Problem formulation

Suppose that the training set consists of n objects with two
modalities, denoted by O = {oi}ni=1 . For the i-th object oi =
{x(1)i , x

(2)
i }, x

(1)
i represents the d1-dimensional image feature, and

x
(2)
i represents the d2-dimensional text feature (usually, d1 6= d2).

Moreover, L ∈ {0, 1}c×n is the available class label for super-
vised case, where c is the number of categories. Here, we denote
the original data from image modality as X(1) = {x(1)1 , ..., x

(1)
n } ∈

Rd1×n, and text modality as X(2) = {x(2)1 , ..., x
(2)
n } ∈ Rd2×n,

respectively, where both X(1) and X(2) are zero-centered.
The purpose of STCMH is to learn unified k-bit hash codes

bi ∈ {−1, 1}k with minimal semantic loss for different modalities
of each training object oi(i = 1, 2, ..., n). In addition, two groups
of modality-specific hashing functions f1(x(1)) : Rd1 → {−1, 1}k
and f2(x(2)) : Rd2 → {−1, 1}k for image and text modalities are
learned by self-taught scheme, respectively.

3.2 Learning latent semantic representation

Matrix factorization, one of the excellent method for discovering
latent concept and dimensionality reduction [13], has been widely
used in a large number of research fields. Following [15, 33], the
common semantic features from heterogeneous data are learned by
collective matrix factorization. Specifically, given the image data
X(1) and the text data X(2), we decompose them jointly as follows:

Jmf (U1,U2,V) = α||X(1) −U1V
T ||2F

+ (1− α)||X(2) −U2V
T ||2F

(1)

where U1 ∈ Rd1×k, U2 ∈ Rd2×k, V ∈ Rn×k, and k is the num-
ber of latent factors, which also equals to the binary code length.
Each column vTi of the matrix VT can be treated as the common
semantic representations of the i-th object with two modalities. The
parameter α is used for balancing the importance of image and text
modalities.

3.3 Binary quantization

Different from the simple and direct thresholding strategy used in
previous works which leads to large quantization error, we enforce
an orthogonal transformation on the learned common semantics to
obtain binary codes with minimal quantization loss.

In fact, orthogonal transformation balances the variance of the dif-
ferent dimensional data in V and satisfies the maximum variance
condition. From the geometric point of view, it finds k directions
again by some geometric transformations, such as rotation, so that
the projection variance of the data in these k directions is maxi-
mum, that is, the k directions contain the most original information.
Therefore, performing quantization in these k directions can increase
the discrimination of binary codes, further reducing the quantization
error. In addition, In addition, the orthogonal transformation elimi-
nates the correlation among k bits data on original common semantic
space V and makes each bit of generated binary code independent. It
is theoretically guaranteed that the generated binary codes are more
distinguishable, and the quantization loss can be further reduced.

Thus, given the latent common semantic representation V, the
quantization loss is minimized by optimizing the following formula:

min
B,T

Jbq(B,T) = ||B−VT||2F
s.t. TTT = I

(2)

where B ∈ Rn×k is the binary codes, and T ∈ Rk×k is the trans-
formation matrix with an orthogonal constraint. Therefore, the data
of same class but with uncorrelated spatial feature are encoded into
similar binary codes, and semantic quantization loss is minimized
correspondingly.

3.4 Mixed graph regularization term

To boost the discriminative power of binary codes, extra graph reg-
ularization constraints on the binary space B are added to preserve
intra-modal and inter-modal similarities.

3.4.1 Intra-modal similarity preservation: We first capture
neighbourhood relationship using local geometric structure for each
modality and then construct k-nn graph model. We denote adjacency
matrix as S(m)(m = 1, 2) whose elements s(m)

ij between x(m)
i and

x
(m)
j are defined as follows.

s
(m)
ij =

{
1, if x

(m)
i ∈ Nk(x

(m)
j ) or x

(m)
j ∈ Nk(x

(m)
i )

0, otherwise
(3)

where Nk(·) indicates the set of k-nearest neighbours.
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Algorithm 1 STCMH

Input: Feature matrices X(1) and X(2), class label L, code length
k, parameters α, β, γ, and λ.

Output: Binary code matrix B ∈ Rn×k.
1: Centralize X(1) and X(2) by means.
2: Initialize V, T by random matrices respectively.
3: Construct the graph Laplacian matrix L via (3) and (4).
4: repeat
5: Fix U1, U2, V, T, update B by (8).
6: Fix V, T, B, update U1, U2 by (10).
7: Fix U1, U2, T, B, update V by (11).
8: Fix U1, U2, V, B, update T by (12).
9: until convergence

10: Compute B by (9).

3.4.2 Inter-modal similarity preservation: Since different
modalities of the same object share closely similar semantics, the
semantic correlations of different modalities are further built with
label information, denoted by similarity matrix S(12), which can be
computed as:

s
(12)
ij =

{
1, if x

(1)
i and x

(2)
j belong to the same category

0, otherwise
(4)

In terms of the above definition of similarities, the mixed graph
regularization term is represented as:

Jmgr(B) =
1

2

n∑
i,j=1

(s
(1)
ij + s

(2)
ij + s

(12)
ij )||bi − bj ||2

=
1

2

n∑
i,j=1

wij ||bi − bj ||2
(5)

where wij = s
(1)
ij + s

(2)
ij + s

(12)
ij . Equation (5) can be further

rewritten as the following matrix form:

Jmgr(B) = tr(BTLB) (6)

where L = D−W is the Laplacian matrix. W ∈ Rn×n is a matrix
composed of wij and D ∈ Rn×n is a diagonal matrix with dii =∑
j
wij .

3.5 Overall objective function

Combining the latent semantic representations term Jmf in (1), the
binary quantization term Jbq in (2), the mixed graph regularization
term Jmgr in (6), and a regularization term, the overall objective
function of STCHM is formulated as follows:

min
U1,U2,V,T,B

J(U1,U2,V,T,B)

= Jmf + Jbq + Jmgr + λR(U1,U2,V,B)

= α||X(1) −U1V
T ||2F + (1− α)||X(2) −U2V

T ||2F
+β||B−VT||2F + γtr(BTLB) + λR(U1,U2,V,B)

s.t. TTT = I
(7)

whereα, β, γ, λ are the tradeoff parameters and theR(·) = || · ||2F is
the regularization term to avoid overfitting. Specifically, the last term
in (7) can be written as R(U1,U2,V,B) = ||U1||2F + ||U2||2F +
||V||2F + ||B||2F .

It is intractable to directly optimize the overall objective function
in (7) due to its non-convex with respect to U1, U2, V, T and B

Algorithm 2 Out-of-Sample Extension

Input: Feature matrices X(1) and X(2), the new query x(m)
q .

Output: The hashing function fm(x(m)) and binary codes bq for
the new query.

1: Generate binary code matrix B ∈ Rn×k by Algorithm 1.
2: for m = 1 to 2 do
3: for l = 1 to k do
4: Obtain l-th bit linear SVM model f (m)

l by self-taught
scheme.

5: end for
6: end for
7: Integrate the above learned model f (m)

l into the modality-
specific hash function f(m)(x

(m)) by (13), m = 1, 2.

8: Generate binary codes bq for the query x(m)
q according to the

hash function.

jointly. Hence, we adopt an iterative strategy to solve the above prob-
lem, i.e., updating each variable respectively while fixing the others,
and the detailed steps are listed as follows.

(i) Update B by fixing U1, U2, V, T . Let ∂J∂B = 0, we have:

B = 2β(2(β + λ)I + γ(L + LT ))−1VT (8)

where I is the identity matrix. Note that once the algorithm con-
verges, we obtain the final binary matrix B as the following
form:

B = sgn(2β(2(β + λ)I + γ(L + LT ))−1VT) (9)

(ii) Update U1, U2 by fixing V, T, B. Specifically, let ∂J
∂U1

=

0, ∂J
∂U2

= 0, then we can obtain:

U1 = X(1)V(VTV +
λ

α
I)−1

U2 = X(2)V(VTV + λ
1−αI)−1

(10)

(iii) Update V by fixing U1, U2, T, B. Let ∂J∂V = 0, we have:

V = (αX(1)T U1+(1− α)X(2)T U2+βBTT )

(αU1
TU1+(1−α)U2

TU2+(β+λ)I)−1
(11)

(iv) Update T by fixing U1, U2, V, B. It essentially is a classic
Orthogonal Procrustes problem, which can be solved by singular
value decomposition (SVD). The matrix BTV is decomposed
into W1ΣW2

T using SVD, and then the matrix T can be
computed by the following formula:

T = W2W
T
1 (12)

More detailed derivation of Eq. (12) are given in the Appendix.

The whole procedure of our proposed STCMH is summarized in
Algorithm 1.

3.6 Out-of-sample extension

Motivated by self-taught scheme [24], we adopt a direct way to
learn k-bit binary codes for out-of-sample data, which differs from
traditional methods. Specifically, the hashing functions learning is
considered as a binary classification problem.

The k binary classifiers for each modality are trained by the lin-
ear Support Vector Machine (SVM), which can be easily extended to
non-linear case. In particular, the original feature X(m)(m = 1, 2)
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and each bit of the binary code bl ∈ {−1, 1}n are treated as input
and class label, respectively, where the vector bl(l = 1, ..., k) rep-
resents each column of the matrix B. The corresponding l-th bit
linear SVM model f (m)

l can be trained by finding the hyperplane
of maximum margin.

Integrating each of the above learned SVM model, the hashing
functions for out-of-sample data can be obtained. Therefore, the
modality-specific hashing functions fm(x(m))(m = 1, 2) can be
represented as follows.

fm(x(m)) = {f (m)
1 (x(m)), f

(m)
2 (x(m)), ..., f

(m)
k (x(m))} (13)

For a new query x(m)
q , its k bits binary codes can be generated

according to (13), i.e. bq = fm(x
(m)
q ).

In summary, Algorithm 2 gives the self-taught hashing functions
and the generation procedure of binary codes for out-of-sample data.

3.7 Complexity Analysis

The computational cost of training STCMH is mainly related to
binary code generation in Algorithm 1 and hash function learning
in Algorithm 2. In Algorithm 1, constructing the graph Laplacian
matrix firstly takes O(dn2), where d = max{d1, d2}. Secondly,
in each of the subsequent iteration, the time cost of solving (8)
is O(n3 + kn2); solving (10) is O((dk + k2)n+ k3); O((kd+
k2)n+ dk2 + k3) and O(k3) for solving (11) and (12), respec-
tively. In Algorithm 2, each linear SVM model is trained in O(dn)
time or less, so O(dkn) is required for k SVM models. There-
fore, the overall training complexity is O(dn2 + t(n3 + kn2 +
(dk + k2)n+ dk2 + k3) + kdn), where t represents the number
of iterations. In the search phase, encoding a query requires only
k dot-product operation, thus the query time cost is very low.

Compared with the training time complexity of unsupervised
baseline methods, such as CVH and CMFH, which are at least
O(n2), our method involves the computation of matrix inversion
due to mixed graph regularization term, resulting in approximately
O(n3). In addition, the time complexity for training process of unsu-
pervised method LSSH is O(n), which is available for large-scale
data. However, its overall performance is poorer than most of the
supervised methods because it ignores the label information. For
supervised baseline methods, SCM Orth and SCM Seq reconstruct
the similarity matrix to avoid high complexity and obtain a linear
time complexity O(n), but their performances are inferior and even
lower than some unsupervised methods on Wiki and Pascal VOC
2007 datasets. In terms of the supervised method SMFH, the time
complexity scales O(n2).

Although the training time complexity of our method is higher
than others, considering its great advantages in performance, our
STCMH can be competitive with the compared methods.

3.8 Extension to multi-modalities

As mentioned above, the proposed STCMH method can be easily
extended to the multi-modal scenario. The main idea of multi-modal
scenario is similar to that of two modalities, which maps more than
two modalities to a common space. Thus, multiple modalities can
be retrieved from each other. Therefore, suppose that the training
data consists of n objects with M modalities, which is denoted
as X(m)(m = 1, 2, ...,M), the objective function of STCMH for
multi-modalities can be formulated as:

min
UmV,T,B

M∑
m=1

αm||X(m) −UmVT ||2F + β||B−VT||2F

+ γtr(BTLB) + λR(
M∑
m=1

Um,V,B)

s.t. TTT = I

where {Um}Mm=1 is the decomposition factor for each modality,

and
M∑
m=1

αm = 1. The third term of the objective function intro-

duces more similarity measurement for multiple modalities, which
also mixes intra-modal similarity S(m) and inter-modal similar-
ity S(mj). The graph Laplacian matrix L is computed based on

W =
M∑
m=1

S(m) +
M∑
m=1

M∑
j>m

S(mj).

In order to learn the hashing functions for out-of-sample mul-
timodal data, we just need to train several SVM models for each
modality with the same approach in Algorithm 2.

4 Experiments

In this section, the experiments and results are presented to eval-
uate the effectiveness of our method in cross-modal retrieval. We
compare our STCMH with six state-of-the-art methods on three
benchmark datasets. The experiment results show that STCMH can
significantly outperform several baseline methods.

4.1 Experiment setting

4.1.1 Datasets: To evaluate the performance of the proposed
STCMH, our experiment chooses three popular datasets, including
Wiki [34], Pascal VOC 2007 [35], and NUS-WIDE [36]. The details
of each dataset are listed as follows.

Wiki consists of 2866 documents which were gathered from
Wikipedia, each with 128-dimensional SIFT feature for image and
10-dimensional topic vector for text. It is grouped into 10 cate-
gories and each instance is annotated with one of them. We randomly
extract 2173 samples as the training set and the rest 693 as the testing
set.

Pascal VOC 2007 contains 5011 training and 4952 testing image-
tag pairs, which were downloaded from Flickr. The images with only
one label are used in our experiments. Hence, a new dataset contains
2808 training items and 2841 testing items in 20 different categories
are generated. The image is described by 512-dimensional GIST fea-
tures, and the text is depicted with 399-dimensional word frequency
vectors.

NUS-WIDE is also a real data set crawled from Flickr, and it
contains a total of 269648 instances with 81 categories. Following
[14, 37, 38], the experimental data are chosen from the largest 10
categories, including 186577 images. Each image is represented by a
500-dimensional Bag-of-Visual-Words SIFT feature, and each text is
represented by a 1000-dimensional feature. Here we randomly select
5000 image-text pairs for training, and use 1866 image-text pairs
selected from the remaining samples for testing.

4.1.2 Baseline methods: Two types of cross-modal retrieval
tasks were evaluated in the experiment, termed ’Txt to Img’ and
’Img to Txt’, respectively. In both tasks, we compare the proposed
STCMH with six state-of-the-art cross-modal hashing methods,
including CVH [11], SCM orth [32], SCM Seq [32], CMFH [15],
LSSH [14], and SMFH [17]. Generally, they can be divided into two
groups. CVH, CMFH, LSSH are unsupervised methods, and the rest
are supervised ones. Source codes of most approaches are available
publicly.

4.1.3 Evaluation metric: We study three types of evaluation
metric on all datasets, i.e., mean average precision (mAP), the
precision-recall curve and the topN-precision curve.

The mAP is the mean of the average precision, which widely used
for evaluating the performance for retrieval tasks. Given N query
samples, the mAP is computed by:

mAP =
1

N

N∑
i=1

AP (qi)
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Table 1 mAP results on three datasets. The best result is shown in boldface.

Task Method Wiki Pascal VOC 2007 NUS-WIDE

16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Img to Txt

CVH 0.1855 0.1586 0.1648 0.1616 0.1521 0.1636 0.1637 0.1559 0.4188 0.4059 0.3943 0.3817
SCM Orth 0.1532 0.1393 0.1297 0.1273 0.1565 0.1362 0.1287 0.1232 0.4051 0.3844 0.3713 0.3611
SCM Seq 0.2341 0.2410 0.2445 0.2554 0.2554 0.3253 0.2451 0.3388 0.5246 0.5390 0.5453 0.5444
CMFH 0.2133 0.2307 0.2366 0.2426 0.2114 0.2269 0.2373 0.2433 0.3912 0.3962 0.3962 0.3910
LSSH 0.2167 0.2180 0.2265 0.2211 0.2541 0.2671 0.2774 0.2787 0.4653 0.4729 0.4784 0.4927
SMFH 0.2723 0.2839 0.2913 0.2989 0.2240 0.2436 0.2620 0.2728 0.4534 0.4553 0.4600 0.4549
STCMH 0.3147 0.3305 0.3394 0.3450 0.3408 0.3886 0.4069 0.4150 0.4927 0.5316 0.5676 0.5896

Txt to Img

CVH 0.2228 0.1847 0.1572 0.1881 0.1815 0.2090 0.2346 0.2531 0.4145 0.4046 0.4092 0.4004
SCM Orth 0.1527 0.1331 0.1216 0.1172 0.1982 0.1484 0.1197 0.1006 0.4131 0.3902 0.3754 0.3675
SCM Seq 0.2257 0.2459 0.2461 0.2510 0.2989 0.4108 0.2652 0.4531 0.5333 0.5540 0.5678 0.5690
CMFH 0.4909 0.5198 0.5337 0.5441 0.6073 0.6923 0.6790 0.6617 0.3909 0.3952 0.3973 0.3959
LSSH 0.4974 0.5204 0.5318 0.5387 0.5416 0.6030 0.6177 0.6307 0.5600 0.5771 0.6047 0.6108
SMFH 0.6164 0.6281 0.6385 0.6412 0.6307 0.7493 0.7791 0.7765 0.4663 0.4678 0.4754 0.4684
STCMH 0.7148 0.7272 0.7375 0.7434 0.8329 0.9176 0.9296 0.9326 0.6656 0.6963 0.7156 0.7304
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Fig. 2: precision-recall curves and topN-precision curves with 64 bits code length on both tasks of Wiki.
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Fig. 3: precision-recall curves and topN-precision curves with 64 bits code length on both tasks of Pascal VOC 2007.

where qi represents a query.AP (·) is the average retrieved precision,
which is defined as:

AP (qi) =
1

G

R∑
r=1

Pqi(r)δ(r)

where G denotes the number of instances related to i-th query qi
in top R retrieved set, and Pqi(r) represents the precision of top r
retrieved instances. The value of indicator function δ(r) is 1 if the
query qi is related to r-th retrieval instances, 0 otherwise.

Additionally, the precision-recall and topN-precision curves are
studied to show the overall trend of variation. The precision-recall
curve reflects the variation of precision as the recall increases. The
topN-precision curve reflects the precision at different numbers of
retrieved instances, which plays a significant role in large-scale
searching for focusing on a small number of results. To avoid random
effects, the results for all methods are averaged over ten runs.

4.2 Experiment results

4.2.1 Results on Wiki: In terms of the mAP results reported
in Table 1, it is easy to observe that STCMH outperforms all base-
lines with different hash bits, which demonstrates the superiority of
our method. In addition, with the code length increasing, the perfor-
mance of some approaches degrades to some extent, such as CVH

and SCM Orth. However, our method still yields better mAP results
with longer codes.

In Fig. 2, we also plot the precision-recall and topN-precision
curves on both tasks when code length is 64 bits. We can find that
STCMH outperforms other methods consistently. Note that on the
last case, the precision of SMFH is close to our method at the final
stage. However, our method performs much better at the beginning
stage, which is of great importance to retrieval tasks. Furthermore,
some methods such as CVH and SCM Orth consistently behave
inferior.

4.2.2 Results on Pascal VOC 2007: The mAP values of
our STCMH and compared approaches on both tasks are shown
in Table 1. Similar to the performance on Wiki, STCMH signifi-
cantly outperforms all baseline methods and achieves remarkable
mAP results. Specifically, compared with all other methods, the
mAP value of our method has been improved by more than 6% and
15% for ’Img to Txt’ and ’Txt to Img’ tasks, respectively, which
demonstrates the importance of minimizing semantic coding loss.
Moreover, the mAP value of ’Txt to Img’ task is much higher than
that of ’Img to Txt’ task at all hash code lengths, indicating that the
text is better than the image to describe the semantic information.

Fig. 3 presents the precision-recall curves and the topN-precision
curves on Pascal VOC 2007 when code length is 64 bits, which
shows the advantage of our STCMH. It can be noticed that the unsu-
pervised approach LSSH performs comparably to or even better than

IET Research Journals, pp. 1–9
6 c© The Institution of Engineering and Technology 2015



Method Top 10 retrieved images 

STCMH 

SMFH 

LSSH 

CMFH
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SCM_Orth 

CVH

Fig. 3. An example of ‘Txt to Img’ retrieval task by querying the text ‘car’ on the Pascal VOC 2007, The top 10 retrieved images of different hashing methods are 
Fig. 4: An example of ’Txt to Img’ retrieval task by querying the text ’car’ on the Pascal VOC 2007, The top 10 retrieved results of different
hashing methods are illustrated in the second column. The incorrect retrievals are marked with red rectangle.
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Fig. 5: precision-recall curves and topN-precision curves with 64 bits code length on both tasks of NUS-WIDE.

the supervised method SMFH. However, the proposed approach still
achieves outstanding performance.

Fig. 4 illustrates an example of the top 10 retrieved images by
different hashing methods for text queries of ’car’. Obviously, the
proposed method achieves more reasonable results for text query
than other methods.

4.2.3 Results on NUS-WIDE: The mAP results of different
approaches on NUS-WIDE dataset are also listed in Table 1. Slightly
different from the results on the above two datasets, STCMH
achieves superior performance to most of the baseline methods
except SCM seq. On the task of ’Img to Txt’, SCM Seq obtains bet-
ter results than STCMH with relatively short code length, such as 16
and 32. The reason may be that the unified and short code length con-
straints for different modalities are too strict for NUS-WIDE dataset,
which limits the performance improvement. With the code length
increasing from 32 to 128 bits, the mAP values of STCMH improve
gradually and even better than SCM Seq when hash code length is
64 and 128 bits. In terms of the ’Txt to Img’ task, STCMH achieves
the highest score among all methods obviously.

Correspondingly, Fig. 5 also shows the precision-recall and topN-
precision curves on NUS-WIDE when code length is 64 bits. It
can be observed that our STCMH outperforms significantly other
approaches on ’Txt to Img’ task, while it is slightly lower than
SCM Seq at the beginning of the ’Img to Txt’ task. However,
SCM Seq performs poorly on wiki and Pascal VOC 2007 datasets.
Hence, it cannot achieve stable performance on different datasets,
while our method is relatively more stable.

Taking into account the great advantage of the proposed STCMH
on the three datasets, we can conclude that STCMH is effective for
cross-modal retrieval.

4.3 Effect of orthogonal transformation and graph
regularization

In our method, the discriminative binary codes are generated using
quantization procedure based on orthogonal transformation, while
incorporating the mixed graph regularization term simultaneously.
To evaluate the advantages of both, we present two variations
of STCMH approach. One performs the binary quantization pro-
cess without orthogonal constraint, namely STCMH noT. The other
does not build the graph regularization, namely STCMH noM. We
conduct the experiments for them respectively. Fig. 6 reports the
mAP comparison results of LSSH, STCMH noM, STCMH noT
and STCMH for both ’Img to Txt’ and ’Txt to Img’ tasks on
Wiki dataset at the code length of 16, 32 and 64 bits. Comparing
STCMH noM with STCMH noT, we can see that the latter pro-
duces better results in both tasks, which implies that the supervised
method STCMH noT with mixed regular terms has a greater impact.
Both of them are superior to the unsupervised baseline method
LSSH, indicating that both orthogonal transform and mixed graph
regularization term help improve the performance of cross-modal
retrieval. Notably, combining the advantages of both, our method
STCMH obtains the highest mAP score.

4.4 Effect of classifiers

To evaluate the effect of different classifiers on retrieval perfor-
mance, we conduct experiments using the proposed method with
five classical classifiers on Wiki dataset. Specifically, the classi-
fiers included in this experiment are Linear SVM, logistic regres-
sion (LR), random forest (RF), k-Nearest Neighbours (KNN), and
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Fig. 6: mAP comparison results of four methods for both ’Img to
Txt’ and ’Txt to Img’ tasks on Wiki dataset.

Adaboost (Ada). Our STCMH using various classifiers are denoted
as the default STCMH (SVM), STCMH-LR, STCMH-RF, STCMH-
KNN, and STCMH-Ada for convenience. The mAP values of
different methods on Wiki dataset are illustrated in Table 2.

From Table 2, we can observe that the mAP results of our method
with different classifiers are relatively close in most cases. The
results also demonstrate that the selection of classifier for our method
slightly affect the performance but not much. Because the kernel
contribution of our method is improving the discriminative power
of the unified binary codes, the selection of classifier is not the
focus of this work. We also note that the proposed STCMH with
different classifiers can still outperform the baseline methods, which
shows the proposed STCMH is able to incorporate different clas-
sifiers and can achieve superior performance. It also validates the
kernel contribution of our work.

4.5 Parameter sensitivity

STCMH has four essential parameters in the overall objective func-
tion, i.e.,α , β, γ, and λ. In our previous experiments, we empirically
set α = 0.5, β = 0.01, γ = 1, λ = 0.001. Here we study the effect
of different parameter settings on algorithm performance and con-
duct experiments for both tasks on Wiki dataset. The results on
Pascal VOC 2007 and NUS-WIDE are similar to that on Wiki
dataset. Specifically, we vary one parameter while keeping others
unchanged in the case of 64 bits. The mAP score variations of
STCMH with the different values of four parameters on Wiki dataset
are plotted in Fig. 7. It can be observed that our STCMH is not sensi-
tive to all the parameters, which validates that STCMH can achieve
satisfactory score over the wide range of parameter values.

4.6 Convergence study

Since an iterative manner is adopted to solve the proposed STCMH
in Algorithm 1, we study the convergence of the iterative algorithm
with 64 bits in this subsection. Fig. 8 gives the convergence curves
on three datasets. As can be seen, our STCMH converges fast on all
datasets. More specifically, our STCMH converges within 10 itera-
tions on Pascal VOC 2007 and NUS-WIDE. The trend of other hash
bits is similar to that of 64 bits. Therefore, our STCMH can obtain
excellent retrieval performance with efficient training time.

Table 2 mAP values of STCMH using different classifiers on Wiki.

classifier Txt to Img Img to Txt

16bits 32bits 16bits 32bits

STCMH 0.7148 0.7272 0.3147 0.3305
STCMH-LR 0.6945 0.6950 0.3140 0.3162
STCMH-RF 0.7373 0.7473 0.3220 0.3436

STCMH-KNN 0.7244 0.7305 0.2849 0.2916
STCMH-Ada 0.7131 0.7312 0.3057 0.3281
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Fig. 8: Convergence curves of the objective function on three
datasets.

5 Conclusion

In this paper, we have proposed a Self-Taught Cross-Modal Hashing
approach for cross-modal retrieval, aiming at minimizing the seman-
tic loss of binary codes. Specifically, we adopt the collective matrix
factorization to learn the latent common semantic feature, while
minimizing the quantization loss by rotating learned semantic space
simultaneously. To further reduce the quantization error, we consider
the binary codes learning for query samples as a binary classification
problem. As a result, STCMH can directly generate the binary hash
codes for unseen data with minimal semantic loss. Experimental
results on three datasets have demonstrated the excellent perfor-
mance of STCMH over six baseline approaches for cross-modal
retrieval.
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8 APPENDIX

8.1 Derivation of Eq. (12)

In step (iv) of Section 3.5, the matrix T is calculated by (12). Here,
we give the derivation process of Eq. (12).

Firstly, since the matrices U1, U2, V, B are fixed, the overall
function to solve can be simplified as:

min
T

β||B−VT||2F
s.t. TTT = I

(14)

The Eq. (14), which is the form of classic Orthogonal Procrustes
problem, can be further derived to obtain the following formula:

||B−VT||2F = tr((B−VT)(B−VT)T )

= tr((B−VT)(BT −TTVT ))

= tr(BBT )− 2tr(BTVT) + tr(VVT )

(15)

Since both B and V are fixed, Eq. (14) is equivalent to maximiz-
ing tr(BTVT).

Secondly, BTV is decomposed into W1ΣWT
2 in terms of SVD,

where both W1 ∈ Rk×k and W2 ∈ Rk×k are orthogonal matrices,
and Σ = diag(σ1, ..., σq). Thus, we have:

tr(BTVT) = tr(W1ΣWT
2 T)

= tr(WT
2 TW1Σ) = tr(PΣ)

=

q∑
i=1

piiσi ≤
q∑
i=1

σi = tr(Σ)

(16)

where P = WT
2 TW is a orthogonal matrix. To maximize

tr(BTVT), let P = I, therefore we have:

WT
2 TW1 = I (17)

Next, since it has been previously obtained that both W1 and W2
are orthogonal matrices, it implies the following formulas.

W1W
T
1 = I

W2W
T
2 = I

(18)

Finally, combining Eq. (17) and Eq. (18), we can further derive to
get T = W2W

T
1 , which is also the Eq. (12) mentioned earlier.
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