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Abstract—In the Big Data era, information retrieval across 
heterogeneous data or multimodal data is a very significant 
issue. Cross-modal hashing has recently attracted increasing 
attention for multimodal retrieval with benefits of fast retrieval 
efficiency and low storage cost. Many supervised cross-modal 
hashing approaches have been explored to achieve better 
performance according to label information. However, most of 
these existing methods take the form of 0/1 binary labels or 
pairwise relationships as supervised information, resulting in 
the neglect of valuable semantic correction among different 
classes. To address this problem, we propose a novel two-step 
supervised cross-modal hashing approach, termed Semantic-
Guided Hashing (SeGH), to obtain the discriminative binary 
codes. Particularly, in Step 1, our method takes the encoder-
decoder paradigm based on label semantics obtained by the 
word vector of class names to learn the discriminative 
projection from original feature space to common semantic 
space. In Step 2, semantic representations of different 
modalities in the common space are projected into a Hamming 
space while preserving intra-modality and inter-modality 
similarity. Extensive experiments compared against several 
state-of-the-art baselines on two datasets highlight the 
superiority of the proposed SeGH for cross-modal retrieval, 
and also demonstrate its effectiveness for zero-shot cross-
modal retrieval. 

Keywords-cross-modal hashing; label semantics; zero-shot 
hashing; discriminative binary codes 

I.  INTRODUCTION 
The information retrieval is very important in the era of 

big data, especially for the retrieval across heterogeneous or 
multimodal data such as the multimedia data like images and 
texts. Data from different modalities usually have semantic 
relationships, arousing the growing demand for supporting 
cross-modal retrieval that obtains relevant results of one 
modality using another modality. Recently, many pioneer 
efforts for cross-modal retrieval [1-4] have been proposed to 
explore the semantic correlation between heterogeneous 
data, and they have achieved remarkable retrieval 
performance. However, these methods will suffer from high 
computational complexity when the scale or dimension of 
data increases. 

Motivated by fast retrieval speed and low storage cost of 
hashing technique, cross-modal hashing has received 
considerable attention for effectively solving the above 
problem, which encodes high-dimensional data into compact 

binary codes, and computes similarity with fast bit-wise 
XOR operation. Most existing cross-modal hashing methods 
mainly project data from different modalities into a common 
semantic space, then generate corresponding hash codes, 
which can be roughly categorized into two branches, i.e., 
unsupervised and supervised approaches. 

Unsupervised cross-modal hashing methods usually learn 
hashing function only from original data to preserve the 
intrinsic structure of data. Collective Matrix Factorization 
Hashing (CMFH) [5] is the first work to learn hashing 
function via Matrix Factorization technology, and generates 
the unified hash codes for different modalities of the same 
instance. Latent Semantic Sparse Hashing (LSSH) [6] 
utilizes matrix factorization and sparse coding to extract 
latent semantic features respectively, then maps them into 
unified hash codes in a joint abstract space. Although these 
approaches can extract the relationship between different 
modalities, the learned hash codes are not discriminative 
sufficiently in an unsupervised manner. 

The supervised ones provide label information of 
heterogeneous data to boost the retrieval power. Along this 
line, Supervised Matrix Factorization Hashing (SMFH) [7] 
extends CMFH by leveraging both label consistency and 
local information, and yields superior performance. Intra- 
and Inter-modality Similarity Preserving Hashing (IISPH) 
[8] maintains the intra- and inter-modality similarity under 
the low-dimensional Hamming space, and integrates 
similarity formulations into hashing function learning. 
Benefiting from the available label, the results of these 
supervised approaches are promising than unsupervised 
ones. However, most of the existing supervised methods 
primarily concentrate on capturing the semantic information 
from original features to latent common semantic space, 
while the supervision information is used in the form of 0/1 
binary labels (such as one-hot vector) or pairwise 
relationships, which makes each class independent to others. 
More importantly, the valuable semantic correlation among 
labels is completely ignored. 

In this work, we address the above problems with the 
proposed two-step hashing method for cross-modal retrieval, 
termed Semantic-Guided Hashing (SeGH). Inspired by the 
excellent ability of word embedding that captures the 
semantic relationships between categories, we first construct 
the class-level semantic space by leveraging the word vector 
obtained by category name, which acts as a guide to learn the 
common latent semantic space. Moreover, unlike the 
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conventional methods which learn the unidirectional 
projection from original feature space to semantic embedded 
space, our proposed method takes an encoder-decoder 
paradigm with class-level semantic space as the middle layer 
to learn the projection with retaining all the information in 
original feature. Specifically, the encoder projects the 
original feature of different modalities into class-level 
semantic space, while the decoder aims to reconstruct the 
original feature precisely. 

On the one hand, the common latent semantic space 
learned subsequently by such a model not only captures the 
semantic correlations among different categories, but also 
preserves the original feature, which further enhances the 
discrimination capacity of the to-be-learned hash codes. On 
the other hand, our method can also be generalized to solve 
the retrieval problem of categories that are never seen during 
training stage (unseen domain), which breaks through the 
limitations of close-set retrieval in traditional cross-modal 
retrieval methods. This is because the class-level semantic 
space builds the connection between seen and unseen 
classes, which makes the available knowledge be transferred 
from seen classes to unseen classes. Furthermore, the feature 
reconstruction demand of this model is generalizable in both 
seen and unseen domains, and unseen classes can also be 
projected into the class-level semantic space without domain 
shift [9]. We will demonstrate this expansion capability in 
the experiments. Besides, intra-modality and inter-modality 
similarity preservation is additionally taken into account to 
improve performance. 

The major contributions of the proposed SeGH can be 
summarized as follows. 

• We propose a Semantic-Guided Hashing (SeGH) for 
cross-modal retrieval, which builds a class-level 
semantic space according to the semantic 
representations of class names generated by GloVe 
model. In such space, the semantic correlations 
among different classes are captured. 

• A model of encoder-decoder paradigm based on 
class label semantics is developed to learn the 
projection from original feature space to common 
latent space, such that all the information contained 
in the original feature will be preserved to the 
projection. It does not only enhance the 
discriminability of the subsequently learned hash 
codes, but also can be extended to unseen domain. 

• The proposed SeGH method has been extensively 
evaluated on two benchmark datasets and the results 
show that it achieves superior performance in 
traditional cross-modal retrieval. In addition, the 
extended experiments also demonstrate the 
effectiveness of our method for cross-modal retrieval 
in the unseen domain, i.e., zero-shot cross-modal 
retrieval. 

The remainder of this paper is organized as follows. 
Section II briefly introduces some related works on cross-
modal hashing and zero-shot hashing. In section III, we 
elaborate the details of the proposed SeGH, followed by the 
experimental results and extensive evaluations on two 

datasets in Section IV. Finally, the conclusion of this work is 
given in Section V. 

II. RELATED WORK 
In this section, we will give a brief introduction of the 

existing work related to our method mainly including cross-
modal hashing and zero-shot hashing. 

A. Cross-Modal Hashing 
Recently, cross-modal hashing has attracted considerable 

attention and various research works based on it have been 
proposed. In terms of the utilization of label information, 
cross-modal hashing approaches can be grouped into two 
categories: unsupervised and supervised ones. 

For unsupervised cross-modal hashing methods, they 
usually preserve the intrinsic structure by utilizing the co-
occurrence information of training data. Song et al. [10] 
proposed inter-media hashing (IMH) that learns the common 
Hamming space by maintaining intra-media and inter-media 
consistency. In addition, Collective Matrix Factorization 
Hashing (CMFH) [5] and Latent Semantic Sparse Hashing 
(LSSH) [6] have also been developed to generate the 
identical hash codes for different modalities of one instance. 
In particular, CMFH employs collective matrix factorization 
to project heterogeneous data into a common semantic space 
and then generates unified binary codes, while LSSH obtains 
the unified hash codes by mapping two isomorphic semantic 
feature spaces of extracted image and text feature 
respectively into a joint abstraction space. Although without 
available supervised information, these methods can also 
achieve the impressive performance for cross-modal 
retrieval. 

The supervised ones learn hashing functions by 
leveraging the class label information, which can further 
boost the retrieval performance. Zhang et al. [11] proposed 
Semantic Correlation Maximization (SCM) for large-scale 
training data, which utilizes the semantic labels to maximize 
the semantic correlations. Based on CMFH approach, 
Supervised Matrix Factorization Hashing (SMFH) [7] takes 
both the label and local structure information into 
consideration, while Intra- and Inter-modality Similarity 
Preserving Hashing (IISPH) [8] considers both the intra-
modality and inter-modality preservation under the low-
dimensional Hamming space. It is worth noting that these 
methods generate the binary codes by discarding the discrete 
constraints, which results in large quantization errors and 
less effective hash codes. To overcome this issue, Discrete 
Cross-modal Hashing (DCH) [12] and Cross-Modal Discrete 
Hashing (CMDH) [13] propose the discrete optimization 
framework to learn the optimized binary codes in a bit-wise 
manner. 

However, the supervision information of these methods 
is limited to the form of 0/1 labels or pairwise relationships, 
which neglects the semantic correlation among labels. The 
proposed SeGH tackles the above problem with class 
semantics as a guideline, and narrows the semantic gap 
between independent labels. 
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B. Zero-Shot Hashing 
Zero-shot hashing incorporates the merits of both 

hashing-based retrieval and zero-shot learning, which can 
generate the hash codes for newly-emerging categories 
(unseen classes) by exploiting limited training categories 
(seen classes). 

Most of existing zero-shot hashing methods mainly 
utilize the word embedding of concepts or human-defined 
attributes to recognize the unseen classes. For instance, one 
of the well-known pioneer works was proposed by Yang et 
al. [14], named Zero-Shot Hashing (ZSH), which transfers 
the supervised knowledge of seen classes to unseen classes 
by semantic embedding representation obtained via 
word2vec model. Inspired by CNN-based hashing, a multi-
task framework termed Discrete Similarity Transfer Network 
(SitNet) [15] was proposed to simultaneously consider the 
semantic embedding loss and regularized center loss. Instead 
of leveraging the word vectors, Attribute Hashing (AH) [16] 
exploits the semantically-rich attribute as the semantic 
representation, and captures the correlations among features, 
hash codes, semantic labels. Nevertheless, these zero-shot 
hashing methods are designed based on single-modality data, 
thus it is difficult to extend to the cross-modal domain. 

To the best of our knowledge, up to now, only one work 
has been developed to tackle the cross-modal zero-shot 
hashing retrieval, named Attribute-Guided Network (AgNet) 
[17], which utilizes attributes to guide the hashing function 
learning. However, AgNet only solves the tasks of image-
based image retrieval (IBIR) and text-based image retrieval 
(TBIR). The image-based text retrieval (IBTR) task has not 
been resolved. Therefore, strictly speaking, it does not 
belong to the zero-shot cross-modal hashing approach, while 
our SeGH can be extended to zero-shot cross-modal hashing, 
which can perform both TBIR and IBTR tasks. 

III. SEMANTIC-GUIDED HASHING 
The details of our proposed semantic-guided hashing are 

elaborated in this section. For simplicity, we describe the 
SeGH method with bimodal data consisting of image and 
text, which can be readily extended to multi-modal scenario. 

A. Problem Definition 

Let 1
1

d n×∈X  and 2
2

d n×∈X  be the training data of 
two modalities which represent the same object. 1d , 2d  are 
the dimensions of image and text feature, respectively, and 
n  is the number of objects. In addition, we define 

{0,1}c n×∈Y  as the binary label matrix, where c  is the 
number of categories. Given the length of hash code k , the 
purpose of our SeGH is to generate the unified binary codes 
for different modalities of the same objects, and to learn two 
hashing functions, i.e., 1

1 1( ) : { 1,1}d kh −x  for image and 
2

2 2( ) : { 1,1}d kh −x  for text. 

B. Overall Framework 
The overall framework of the proposed SeGH approach 

is illustrated in Fig. 1, including offline and online process. 
Specifically, offline process aims at hash codes generation 
and hashing functions learning for out-of-sample data, which 
consists of two steps, namely discriminative semantic-guided 
projection learning and hash codes learning. In the first step, 
according to the off-the-shelf GloVe model, the class-level 
semantic space is firstly built according to the word vectors 
of category names. Then, the discriminative projection is 
learned based on encoder-decoder paradigm guided by class 
label semantics. In the second step, original data are firstly 
projected into the common latent semantic space by 

offline process online process
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Fig. 1 The overall architecture of the proposed SeGH. 
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leveraging the projections learned in the previous step. Then, 
the binary codes of heterogeneous data are generated in the 
Hamming space, while preserving the intra-modality and 
inter-modality similarity. For online process that performs 
cross-modal retrieval, one image or text query can be 
encoded into binary codes by hashing function with the 
threshold strategy. The relevant results are returned by 
calculating the Hamming distance between hash codes of 
query and database. 

C. Discriminative Semantic-Guided Projection Learning 
Most cross-modal hashing methods generally take 

advantage of 0/1 form of binary labels or pairwise 
relationships as supervision information, which implicitly 
neglects the semantic correlation among different classes. 
Inspired by the superior capability of word embedding, we 
consider embedding each category into a 300-dimensional 
word vector which is extracted with the off-the-shelf GloVe 
model [22]. Then, the class-level semantic space is 
constructed by the word vector obtained above of category 
names. Instead of the independent label matrix described 
above, the label matrix is represented by the class semantic 
matrix 300 n×∈S  in the following part. 

Next, the model of encoder-decoder paradigm is 
developed based on class semantics. Specifically, the 
matrices 1300

1
d×∈W  and 2300

2
d×∈W  are obtained from 

feature space 1X  and 2X  to class-level semantic space, 
respectively. Meanwhile, the semantic space is mapped back 
to the original space with two projection matrices 

*
1W and *

2W . Based on the work of [18], we tie the weights 
to simplify the model, i.e., *

1 1
T=W W  and *

2 2
T=W W . Given 

the class semantic matrix S under the class-level semantic 
space, this model can be achieved as follows. 

1 2

2 2
1 1 1 1 2 2 2 2, 

1 1 2 2

min || || || ||

  . .  ,  

T T
F F

s t

− + −

= =
W W

X W W X X W W X

W X S W X S
    (1) 

Considering that it is difficult to solve the hard 
constraints 1 1 =W X S  and 2 2 =W X S , Equation. (1) is 
rewritten by relaxing the constraint as stated below. 

1 2

2 2
1 1 1 1 1 1, 

2 2
2 2 2 2 2

min || || || ||

             || || || ||

T
F F

T
F F

J α

α

= − + −

+ − + −
W W

X W S W X S

X W S W X S
        (2) 

D. Hash Codes Learning 
As we can see, the projection matrices 1W  for image 

and 2W  for text from feature space to common latent 
semantic space are obtained by solving the problem in (2). 
Therefore, the common latent semantic representations can 
be learned based on 1W  and 2W , which are then projected 
into a Hamming space to generate the hash codes by the 
projection matrix 300k×∈P . Consequently, the objective 
function of hash codes learning can be stated as follows. 

2 2
1 1 1 2 2 2,

min || || || || ( )F F Rβ β λ− + − +
P H

PW X H PW X H P   (3) 

To avoid overfitting, a regularization term ( )R ⋅  is 
introduced. Finally, the hash codes can be generated by the 
sign function, i.e., ( )sign=B H . 

E. Intra- and Inter-modality Similarity Embedding 
In order to learn more fine-grained and discriminative 

unified hash codes, both intra-modality and inter-modality 
similarities are embedded into the learning procedure of 
hash codes and hashing functions. 

Firstly, we consider the intra-modality similarity 
preservation for each modality. Specifically, two nearest 
neighbor affinity matrices ( ) ( 1,2)m m =A  are constructed to 
explore the local geometric structure for different 
modalities, defined as follows. 

( ) ( ) ( ) ( )
( ) 1,  if ( ) or  ( )

 0,  otherwise

m m m m
i k j j k im

ij

N N
A

∈ ∈
=

x x x x
    (4) 

where ( )kN ⋅  is defined as the set of k nearest neighbors. 
Moreover, the label information is incorporated to 

maintain the similarity between different modalities. Hence, 
the similarity matrix interA  of heterogeneous data (1)

ix  and 
(2)
jx  can be defined as: 

(1) (2)
inter  1,  if        

 0,  otherwise
i j

ij

and belong to the same class
A =

x x
(5) 

Combining the above similarity matrices involving intra-
modality and inter-modality, we formulate the similarity 
preservation as the following form: 

2 (1) (2) inter

1 1

1( ) || || ( )
2

         ( ) ( ) ( )

n n

se i j ij ij ij
i j

T total T T

J A A A

tr tr tr
= =

= − + +

= − =

H h h

HDH HA H HLH
   (6) 

where ( )tr ⋅  indicates the trace of the matrix. 
(1) (2) intertotal = + +A A A A  and D  is a diagonal matrix, which 

can be computed as total
ii iji

D A= . 

F. Overall Objective Function and Optimization 
As we mentioned in the previous section, our SeGH 

method is composed of two steps. The objective function of 
the first step that learns the discriminative semantic-guided 
projection is represented as 1J , as shown in (1). To optimize 

1J , we can take the derivative of 1J  with respect to 1W  and 

2W  to zero. Then we obtain: 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

0

0

T T T T

T T T T

α α
α α

+ − − =

+ − − =

SS W W X X SX SX
SS W W X X SX SX

         (7) 
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which is the well-known Sylvester equation [19] with the 
following formulation of 0+ + =AW WC D  and it can be 
solved using the lyap function in MATLAB. 

In the second step, the objective function combining 
hash codes learning in (3) and similarity embedding in (6) is 
formulated as follows: 

2 2
2 1 1 1 2 2 2,

min || || || ||

             ( ) R( )

F F

T

J

tr

β β

γ λ

= − + −

+ +
P H

W X H W X H

HLH P
     (8) 

where 1β , 2β , γ , λ  are balance parameters. However, it is 
hard to directly resolve due to two unknown variables. Here, 
an iterative method with the following steps is adopted to 
optimize this formulation. 

Step 1: Fix 1W , 2W  and H , let 2 0J∂
∂ =P , we have: 

1 1 1 2 2 2
1

1 1 1 1 1 2 2 2 2 2

(2 2 )

         ( 2 )

T T T T

T T T T

β β
β β λ −

= +

+ +

P HX W HX W
W X X W W X X W I

    (9) 

Step 2: Fix 1W , 2W  and P , let 2 0J∂
∂ =H , then we can 

obtain: 
1

1 1 1 2 2 2 1 2(2 2 )[2( ) ( )]Tβ β β β γ −= + + + +H PW X PW X I L L  
(10) 

The whole procedure of the proposed SeGH is 
summarized in Algorithm 1. Once the projection matrices 

1W , 2W  and P  are obtained, the hashing function for 
different modalities can be easily generated according to the 
following equation, i.e., 1 1 1 1( ) ( )h sign=x PW x  for image and 

2 2 2 2( ) ( )h sign=x PW x  for text. 
Moreover, the objective function for our extension 

version with unseen domain as mentioned in Section I is 
same to all the formulations above. The only difference 
from traditional cross-modal hashing is that the training sets 
comprise of instances of seen classes, while the query sets 
are only from unseen classes. 

G. Complexity Analysis 
The computational complexity of our SeGH is discussed 

as follows. In the training phase, the time consuming mainly 
includes semantic-guided projection learning, graph 
Laplacian matrix construction and hash codes learning. 
Typically, two projection 1W  and 2W  can be computed at a 
cost of 3( )O v , where 300v = . The complexity for 
computing graph Laplacian matrix L  is 2( )O dn , where 

1 2max{ , }d d d= . For hash code learning, it involves the 
alternating updates of P  and H . Solving (9) for P  and (10) 
for H  requires the time complexity of 

2 3 2( ( ( ) ))O t d k v n kvd v d v kv+ + + + +  and 3 2( (O t n kn+ +  
))kdn kvd+ respectively, where t  is the number of 

iterations. Because ,k d  and v n , the overall time cost is 

approximately 2 3( ( ( ) ))O dn t n d k v n+ + + . In the testing 
phase, the time complexity of each query is constant with 

( )O kd . 
Compared to the time complexity of training most 

baseline methods such as CMFH, SMFH and IISPH, which 
are at least 2( )O n , our method is relatively higher due to 
the inverse calculation for graph Laplacian matrix. The 
other baseline approaches such as SCM_Orth and SCM_Seq 
mainly focus on the complexity problem and get lower time 
cost, but their retrieval performance may be less optimistic 
on some datasets. 

Although our method has a relatively higher time 
complexity, considering its great advantages in overall 
performance, we can learn that SeGH can be competitive 
with the baselines. 

IV. EXPERIMENT 
In this section, we carry out the extensive experiments 

on two public benchmark datasets, and validate the 
performance of our method in comparison with several 
state-of-the-art cross-modal hashing approaches. In addition, 
the extended experiments are also conducted to demonstrate 
the applicability and effectiveness of our method on zero-
shot cross-modal retrieval tasks. 

A. Datasets 
LabelMe [20] consists of 2686 images with annotated 

several tags, which can be grouped into 8 outdoor scene 
categories. Each image is represented by 512-dimensional 
GIST feature, and each text is depicted with 366-
demensional index vectors of tags. In our experiments, we 
randomly select 2014 samples as the training set, the rest as 
testing set. Moreover, all categories are randomly split into 
5 seen and 3 unseen categories for each round in the 
extended experiment. 

Algorithm 1 Semantic-Guided Hashing 
Input: Feature matrices 1X  for image and 2X  for text, class semantic 
matrix S , binary label Y , hash code length k , and parameters 

1 2 1 2, , , , ,α α β β γ λ . 

Output: Binary hash codes { 1,1}k n×∈ −B , projection matrices 

1 2, ,W W P . 

1: Randomly initialize 1 2,W W , respectively. 

2: Compute 1W  and 2W  by solving (7). 
3: Randomly initialize ,P H , and construct the graph Laplacian matrix 

L  by (4) and (5). 
4: repeat 
5:    Fix 1 2,W W  and H , update P  by (9). 

6:    Fix 1 2,W W  and P , update H  by (10). 
7: until convergence 
8: ( )sign=B H  
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Pascal VOC 2007 [21] was downloaded from Flickr 
with 5011 training and 4952 testing image-text pairs. The 
images with multi-labels are discarded, resulting in 2808 
images for training and 2841 for testing. Each image-text 
pair is labeled with one of 20 semantic categories. For each 
instance, the image is detailed with 512-dimensional GIST 
feature and the text is represented by 399-dimensional word 
frequency vector. In the extended experiment, 4 categories 
are randomly selected as unseen categories and the others as 
seen ones for each round. 

B. Protocols and Baseline Methods 
The performance of cross-modal hashing methods is 

measured on two different retrieval tasks, namely ‘Txt to 
Img’ and ‘Img to Txt’. In both tasks, we adopt two types of 
evaluation metrics, i.e., mean average precision (mAP) and 
precision-recall curves. The mAP is the mean of the average 

precision (AP) for all the query samples, and AP is 
computed as 1

1
AP ( ) ( )R

T r
P r rδ

=
= , where T  denotes the 

number of relevant instances in top R retrieved results and 
( )P r  indicates the precision of top r retrieved instances. 
( ) 1rδ =  means the r-th result is related to the query, and 0 

otherwise. Furthermore, the precision-recall curves reflect 
the variation of precision with respect to different recall, 
which are widely adopted to evaluate the performance of 
retrieval tasks. 

Our method is compared against six state-of-the-art 
cross-modal hashing approaches which are CMFH [5], 
LSSH [6], SCM_Orth [11], SCM_Seq [11], IISPH [8], 
SMFH [7], respectively. They can be classified into two 
group: CMFH and LSSH are unsupervised methods, and the 
remaining are supervised ones. For the extended experiment 

TABLE I. The mAP results on LabelMe and Pascal VOC 2007 datasets. The best result is shown in boldface. 

Task Method 
LabelMe Pascal VOC 2007 

8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits 

Img to Txt 

SCM_Orth 0.1502 0.1494 0.1456 0.1471 0.1486 0.2031 0.1565 0.1362 0.1287 0.1232 

SCM_Seq 0.1956 0.2554 0.3253 0.2451 0.3388 0.1956 0.2554 0.3253 0.2451 0.3388 

CMFH 0.3991 0.3908 0.3827 0.3669 0.3880 0.1677 0.1861 0.1853 0.1777 0.1728 

LSSH 0.5816 0.5882 0.6360 0.6580 0.6522 0.2293 0.2532 0.2705 0.2762 0.2834 

IISPH 0.3961 0.3811 0.3739 0.3666 0.3720 0.1649 0.1889 0.1855 0.1768 0.1714 

SMFH 0.4710 0.5903 0.6238 0.6386 0.6898 0.1865 0.2233 0.2324 0.2390 0.2345 

SeGH 0.6154 0.7201 0.7775 0.8116 0.8263 0.2752 0.3301 0.3510 0.3727 0.4042 

Txt to Img 

SCM_Orth 0.1333 0.1333 0.1323 0.1313 0.1288 0.2387 0.1982 0.1484 0.1197 0.1006 

SCM_Seq 0.2037 0.2989 0.4108 0.2652 0.4531 0.2037 0.2989 0.4108 0.2652 0.4531 

CMFH 0.5348 0.4973 0.4771 0.4572 0.4773 0.3648 0.4838 0.5412 0.5173 0.4960 

LSSH 0.5771 0.5994 0.6238 0.6522 0.6496 0.4423 0.5396 0.6059 0.6198 0.6311 

IISPH 0.5282 0.4937 0.4750 0.4573 0.4578 0.3512 0.4880 0.5458 0.5192 0.4939 

SMFH 0.6719 0.8124 0.8121 0.8010 0.8088 0.3729 0.5837 0.6556 0.6518 0.6140 

SeGH 0.8315 0.8952 0.9194 0.9260 0.9336 0.7019 0.8289 0.8608 0.8831 0.9011 
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Fig. 2. Comparison of Precision-recall curves with hash codes @ 64 and 128 bits on both tasks of LabelMe dataset. 
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Fig. 3. Comparison of Precision-recall curves with hash codes @ 64 and 128 bits on both tasks of Pascal VOC 2007 dataset. 
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in unseen domain, two zero-shot hashing methods including 
ZSH [14] and AH [16] are added to comprehensively 
evaluate the retrieval performance. The parameter settings 
of these methods in our experiment are consistent with those 
in their original papers. 

C. Experiment Results 
1) Results on LabelMe 

Table I reports the mAP values of SeGH and six 
baseline approaches on LabelMe dataset with 8, 16, 32, 64, 
128 bits. From Table I, we easily observe that SeGH 
achieves the best mAP scores on both retrieval tasks, which 
demonstrates the effectiveness and superiority of our 
method. Note that most of the methods have higher mAP 
score of Txt-to-Img task than that of Img-to-Txt task. This 
may mean that it is more difficult to capture the latent 
semantic information in images than texts. 

The precision-recall curves on LabelMe dataset with 64 
bits and 128 bits are plotted in Fig. 2. Similar to the results 
of mAP, it can be observed that SeGH significantly 
outperforms all the baseline methods on different tasks. 
Additionally, we also find that our SeGH performs better 
with longer hash codes, this is because the fact that more 
discriminative information can be encoded into binary codes 
as the code length increases. 

2) Results on Pascal VOC 2007 
The mAP values of SeGH and all the baselines on Pascal 

VOC 2007 dataset are presented in Table I. It can be seen 
from the table, the mAP results of the proposed SeGH are 
superior to other baseline methods on both tasks. In 
particular, compared with the second best method, SeGH 
gains a significant increment of 20.5% to 27% for Txt-to-
Img task. Furthermore, with the increasing of hash code 
length, some methods such as SCM_Orth, CMFH and 
IISPH decrease to some extent, while our method achieves 
the continuous performance improvement. 

Fig. 3 shows the precision-recall curves on Pascal VOC 
2007 under the setting of 64 and 128 bits. It is clearly to find 
that our SeGH achieves superior performance against most 
of the baselines apart from LSSH, which is consistent with 
the above results on LabelMe dataset. It is worth noting that 
the unsupervised method LSSH is almost comparable to or 
even outperforms all the supervised approaches on Pascal 
VOC 2007, while the proposed SeGH still gains the best 
results in Txt-to-Img task. However, LSSH has an 
advantage over SeGH at the beginning stage of Img-to-Txt 
task. We conjecture that a large number of label information 
to constrain the binary codes may be too strict for the 
supervised approaches on Pascal VOC 2007 dataset. 

Considering the advantages of our approach in all 
experiments, it can be concluded that the proposed method 
has the promising ability to deal with cross-modal retrieval 
tasks, and can be competitive with several state-of-the-art 
approaches. 

D. Extended Experiments for Unseen Domain 
To validate the effectiveness of our method for zero-shot 

cross-modal retrieval, the extended experiments are carried 
out in this section. The mAP score is adopted to evaluate the 

retrieval performance in unseen domain. Since unseen 
classes are randomly sampled for each time, the average 
results over 20 times are taken as final results to avoid 
unstable results in all methods. The mAP values of SeGH 
and all comparative methods on LabelMe and Pascal VOC 
2007 datasets are shown in Fig. 4. It should be noticed that 
SeGH achieves the highest mAP scores on both two datasets 
with all code length cases consistently, while other 
approaches show relatively poor performance because they 
cannot capture the common characteristics of seen and 
unseen classes. Moreover, similar to phenomenon of 
previous experiments for traditional cross-modal retrieval, 
the mAP values of our SeGH gradually increase as the code 
length varies from 8 to 128 bit. Besides, an interesting 
observation is that single-modal zero-shot hashing methods 
such as AH and ZSH drastically outperform supervised 
cross-modal hashing methods such as SCM_Orth and 
SCM_Seq on both tasks of LabelMe dataset. This confirms 
that traditional close-set retrieval approaches may suffer 
from serious performance degradation in the scenarios 
dealing with unseen classes, which also indicates that the 
proposed SeGH has the ability to apply to zero-shot 
problem. 

E. Parameter Sensitivity Analysis 
From the overall objective function mentioned above, the 

proposed SeGH has six parameters, namely 1 2 1 2, , , , ,α α β β γ λ , 
respectively. In this section, we only analyze the effect of 
different parameter settings for both tasks on Pascal VOC 
2007 dataset because LabelMe dataset has the similar results 
for different parameters. In particular, the length of hash 
codes is fixed as 64, and the experiments on one parameter 
are performed by keeping the value of other parameters 
unchanged. Fig. 5 shows the mAP results of SeGH under 
different setting of six parameters on both tasks of Pascal 
VOC 2007 dataset. It can be observed that the proposed 
SeGH is insensitive to all the parameters and also validates 
that SeGH can achieve outstanding results over a wide range 
of parameter values. To compare with other baselines, we 
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Fig. 4. The mAP values of different methods for zero-shot cross-modal 
hashing retrieval on LabelMe and Pascal VOC 2007 datasets with both 
tasks. 
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empirically set 1α  and 2α  to 103, 1β  and 2β  both to 10-3, γ  
and λ  both to 10-2 in all the previous experiments. 

F. Convergence Study 
Since the iterative procedure is employed to optimize the 

objectives in Algorithm 1, here we analyze its convergence 
property on all datasets. Fig. 6 (a) and (b) plot the 
convergence curves of objective function value with 
different code lengths on LabelMe and Pascal VOC 2007 
datasets, respectively. It can be observed that our SeGH 
converges quickly on both datasets. Particularly, SeGH can 
converge within only 6 iterations for LabelMe dataset, and 
for Pascal dataset, it converges at 3-th iteration in the case 
of all code lengths, which indicates the high efficiency of 
the proposed method. Combined with the previous 
experimental results, it demonstrates that the proposed 
SeGH can achieve remarkable performance with fast 
convergence rate. 

 
 
 

V. CONCLUSION 
In this paper, a novel two-step supervised hashing 

approach named Semantic-Guided Hashing (SeGH), has 
been proposed to solve the cross-modal retrieval problem, 
which aims at gaining the discriminative binary codes guided 
by label semantics. Specifically, the class-level semantic 
space is firstly constructed by using the word vector obtained 
by category name. Based on label semantics under this 
space, a model of encoder-decoder paradigm is introduced to 
learn the projection matrix, and further to obtain the common 
latent space. Finally, the discriminative binary codes can be 
generated by mapping common representations into 
Hamming space. Extensive experiments on two public 
datasets validated that the proposed method can achieve 
superior performance for cross-modal retrieval, and also 
demonstrated that SeGH has the ability to deal with unseen 
domain problem. 
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