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ABSTRACT

Cross-modal retrieval with deep neural networks heavily re-
lies on accurate annotation. However, existing methods may
easily suffer from the scarcity and validity of annotations due
to the expensive cost of manual labeling. In addition, it is in-
evitable that noisy labels are imposed during labeling. To this
end, it is worthwhile to explore the potential of noisy labels
in cross-modal retrieval. In this work, we propose a novel
framework entitled Dual-Mix for Cross-Modal Retrieval with
noisy labels (DMCM). It consists of two components, which
are mixing the robust loss functions and mixing augmentation
for noisy samples. In the first mixing stage, the normalized
generalized cross entropy and mean absolute error are com-
bined to boost each other. Then, after separating clean and
noisy samples by Beta Mixture Model, we mix these samples
via augmentation to further address the scarcity of labeled
samples. Extensive experiments demonstrate the significant
superiority of our DMCM.

Index Terms— cross-modal retrieval, noisy labels, mix-
ing, contrastive learning

1. INTRODUCTION

With the explosion in multimedia data on the Internet, cross-
modal retrieval has received increasing attention, such as
image-text [1,2], and text-audio retrieval [3].

Many supervised methods have been proposed for cross-
modal retrieval [4]. However, these methods heavily depend
on the quality of the labels. Unfortunately, obtaining large-
scale high-quality annotated labels through manual expert-
labeling is extremely expensive. In addition, it inevitably
introduces numerous mistakes or label noise. According to
[5-7], Deep Neural Networks (DNN) can easily overfit to
noisy labels within training. Although many unsupervised
methods are proposed to avoid the interference of noisy la-
bels, their performances are significantly inferior to super-
vised methods. Therefore, how to train a cross-modal re-
trieval model that is robust to noisy labels is crucial for im-

*Corresponding author. This work is supported by the National Natural
Science Foundation of China (62006035), Dalian Science and Technology
Innovation Foundation (2023JJ13SN065), and the Fundamental Research
Funds for the Central Universities (DUT22RC(3)011).

proving the applicability and efficiency, which has not been
well studied yet.

In the unimodal scenario, numerous studies [8—10] have
been conducted to develop robust models which are capa-
ble of handling noisy labels and achieving promising perfor-
mance, such as correction methods [11, 12] and Co-teaching
[6]. However, in multimodal scenarios, the noisy labels can
bring confusion in the connections between different modali-
ties, leading to difficulties in bridging the heterogeneous gap.

Consequently, combating the impact of noisy labels and
mitigating cross-modal semantic gap simultaneously become
more challenging and complicated. Only a few studies have
been conducted, which can be roughly categorized into two
groups: robust algorithms and noise detection methods.

Robust algorithms are developed to mitigate the sensi-
tivity to noisy labels, which involve constructing robust net-
works, employing robust loss functions, and applying robust
regularization techniques. For instance, Xu et al. [13] em-
ployed an early learning regularization to punish overfitting.
Recently, many studies have adopted the small-loss criterion
[10,14], which suggests that samples with smaller loss values
are more likely to have clean labels. For instance, Multimodal
Robust Learning (MRL) [15] introduces a modified cross-
entropy loss, which assigns higher weights to clean samples
with a small loss, aiming to guide the DNN to prioritize learn-
ing from clean labels. However, noise labels still remain in the
training data, leaving a memorization effect on DNN, which
adversely degrades the retrieval performance. As can be seen
in Fig.1 MRL [15] tends to overfitting during training.

Noise detection methods aim at identifying noisy sam-
ples and devising strategies to alleviate the influence of noise
samples, such as re-labeling with pseudo labels, and treating
them as unlabeled samples in a semi-supervised manner. For
example, Okamura et al. presented Label Correction based
on Network Prediction (LCN) [16] to annotate the noisy sam-
ples with predicted labels. While Yang et al. proposed a
Cross-Modal Mutual Quantization (CMMQ) [17] that exclu-
sively uses clean samples for training, resulting in a signifi-
cant reduction in sample size and degradation in cross-modal
retrieval performance.

In this paper, by integrating the advantages of robust algo-
rithms and noise detection methods, we propose a novel Dual-
Mix for Cross-Modal Retrieval with Noisy Labels (DMCM).
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Fig. 1. Retrieval results by MRL and DMCM for the
Wikipedia dataset under symmetric noise rates of 0.6.

The framework of our method is shown in Fig. 2. Firstly, to
narrow the heterogeneous gap, we take the pre-trained CLIP
as backbone and stack a 3-layer fully connected network
to project each modality into a shared embedding space.
Then, in order to combat noisy labels, we propose to mix
two robust loss functions, which are Normalized General-
ized Cross Entropy (NGCE) [18] and Mean Absolute Error
(MAE). Our new robust clustering loss ensures the robust
learning of multimodal consistency. Moreover, we further
mix clean and noisy samples by a data augmentation method.
In doing so, our DMCM can reduce the influence of noisy
labels during training and increase the training sample size
simultaneously. Specifically, we discern clean samples from
noisy ones by modeling the per-sample loss distribution of the
dataset through a Beta Mixture Model (BMM). In addition,
we employ multimodal contrastive learning to further im-
prove the discrimination of comment embeddings. Extensive
experiments are carried out on three benchmark datasets for
cross-modal retrieval, our method demonstrates significant
superiority over the state-of-the-art methods.

The contributions of this work are summarized as follows:

* A novel framework DMCM for cross-modal retrieval
with noisy labels is proposed, where noise detection is
incorporated to robust clustering loss and their advan-
tages are seamlessly integrated.

* Dual mixing components are proposed, which are mix-
ing loss for robust clustering and mixing augmentation
for noisy samples. To the best of our knowledge, ours
is the first attempt towards this end for cross-modal re-
trieval with noisy labels.

2. APPROACH

2.1. Preliminaries

Given a K-class dataset with noisy labels as D = {M;}™,,
where M; = {(x, y;)}jvz | is the i-th quality, xi e RYis
the j-th sample from the i-th modality, y* € {0, 1}5 is the
corresponding one-hot label (possibly incorrect) for x;
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Fig. 2. Overall architecture of the proposed DMCM.

For cross-modal retrieval, multi-modal inputs are usually
projected into a common semantic space through modality-
specific functions { f; : X; — Z}le, fi is the function for the
i-th modality, which can be instantiated with a DNN parame-
terized with ©;, which can be formulated as:

z; = fi(x},0;) € R (D

where c indicates the dimension of common space.
Our method mainly consists of two mixing stages, which
are described in detail as follows.

2.2. Mixing Loss for Robust Clustering

To learn discriminative common embeddings of samples from
different modalities, we first leverage unified prototypes C =
{c1,+ -+ ,ck} as anchors in the embedding space, where cj,
represents the k-th class proxy. Then, the probability that a
sample xé- belongs to the k-th class can be estimated by:

1.7,
_ exp (T—lckz-)
p(k1x) = e @)
D=1 €XP (Ect Z;)

where 7 is a temperature parameter.

Subsequently, we maximize the similarity between em-
beddings of all samples and their corresponding category pro-
totypes. Thus, samples from different modalities are aligned
to the anchors to bridge the semantic gap.

Usually, the modality-specific function f can be learned
by minimizing robust loss functions such as GCE [19], FL
[20], and RCE [21] in a dataset with noisy labels. Unfortu-
nately, only using simple robust loss is still not enough for an
excellent f. As mentioned in [18], several robust loss func-
tions suffer from a problem of underfitting.

To address this challenge, we mix two different robust loss
functions following [18]. Concretely, an “active” loss is used
to only maximize the probability of being in the ground truth
class, and a “passive” loss can further minimize the proba-
bilities of being in other classes. In our work, Normalized
Generalized Cross Entropy (NGCE) and Mean Absolute Er-
ror (MAE) are selected as the active and passive losses, re-
spectively. This is the first mix of our model resulting in the




robust clustering loss function in Eq (3), where y’ (k) can be
interpreted as the probability associated with the k-th proto-
type for the sample x.

Lm =NGCE+ MAE
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2.3. Mixing Augmentation for Noisy Samples

In addition to the mixing loss for robust clustering, we further
propose a mixing augmentation method for noisy samples,
which is the second mix of our DMCM. After considerable
investigations of existing works, we have a conclusion that
discarding noisy samples directly leads to insufficient training
samples while reserving noisy samples may result in overfit-
ting. Motivated by such a fact, we attempt to augment the
noisy samples by mixing clean samples. To the best of our
knowledge, ours is the first attempt towards this end for cross-
modal retrieval with noisy labels.

Therefore, it is necessary to separate noisy samples from
clean samples. According to the small-loss criterion [10, 14],
samples with smaller loss values are more likely to have clean
labels. Thus, we can first compute the per-sample loss in Eq.
(3). Then, we fit the per-sample loss of all training data from
different modalities by using a Beta Mixture Model (BMM)
to model the distribution of clean and noisy samples.

For each sample X}, its clean probability w, is the poste-
rior probability p(g|¢;), where g is the Beta component with
smaller loss, /; is the per-sample loss in Eq. (3). By introduc-
ing a threshold parameter denoted as d, the training dataset is
divided into a clean set bc and a noisy set Dn as follows,

D. = {(x;,q;) | wj» > 6i,V(X§»,y§) € l~)} 4)
Dn:{( J,qj)|w < 6;,V(x J,yJ)ED} 5)

where D indicates the mini-batch data and qj is the one-hot
vectors with floating-point values.

Drawing inspiration from the MixMatch [22], we aug-
ment the noisy samples by mixing them with randomly se-
lected clean samples. Specifically, let (x1,q1) € Dn repre-
sent a noisy sample, and (X2, q2) € D, denote a clean sample
from D,. The mixed sample (x',q’) is computed as follows:

x' = Mx; + (1 — \) xq,
d =1 +(1-N)qe.

where A is the tradeoff parameter. After mixing, noisy data
is defined as D;, = {(x'},q’;)}. In the training stage, the

(6)

clean data D, and the noisy data D;,/ are combined to train
the robust clustering model by minimizing the loss in Eq. (3).

2.4. Multimodal Contrastive Learning

In the context of multimodal data, the inherent potential of
contrastive learning can be harnessed to effectively enhance
their mutual information. Building upon this principle, a mul-
timodal contrastive loss is further constructed to mitigate se-
mantic gap across different modalities [15]:

Lo S e (4 ()" 7)
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where T is a temperature parameter.

2.5. Overall Objective

Note that we first perform a warm-up process with the loss
L = L,, to ensure the network achieves initial convergence.
After the warmup, the overall loss function is formulated as:

L=03Ly,+(1-pP)L: 8)

where [ is a hyper-parameter. By minimizing the overall loss
Eq. (8), the network parameters {©; } _, and prototypes C
can be optimized using stochastic gradient descent.

Table 1. Statistics of three datasets used in our experiments.

Dataset ‘ Training Testing Classes
Wikipedia 2157 462 10
Pascal-Sentence 8000 200 20
XmediaNet 32000 4000 200

3. EXPERIMENTS

3.1. Datasets and Features

Three benchmark datasets, i.e., Wikipedia [23], Pascal-
Sentence [24], and XmediaNet [25] provided by [1] are
used to validate our DMCM. Table 1 presents the details of
training and testing. We adopt the pretrained CLIP as the
backbones for images and texts on all datasets. Then, two
3-layer fully connected networks are stacked on the back-
bones respectively for learning the common representation of
images and texts.

3.2. Implementation details

In this work, we employ ADAM [26] as our optimizer to train
DMCM. The learning rate is 0.0001 and set 7, = 1, 75 = 1.
For Wikipedia, Pascal-Sentences, and XMediaNet, we set the
batch sizes as 100, 100, 200, the epochs as 100, 150, 250, and
the 5 as 0.85, 0.7, 0.3. The common space dimension L is set
to 512 on three datasets.

We initially warm up the model with 3 epochs for
Wikipedia and XMediaNet, and 5 epochs for Pascal-Sentences



Table 2. Performance comparison in terms of mAP under the symmetric noise rates of 0.2, 0.4, 0.6, and 0.8 on three widely-
used benchmark datasets. The best score is shown in bold. MRL* employs VGG19 and Doc2Vec as the backbone.

Method

Wikipedia

Pascal Sentences

XMediaNet

12T

T2I

12T

T2I

12T

T2I

0.2

0.4

0.6

0.8

0.2

04 06

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

DCCA
DCCAE
SDML
DSCMR
LCN

0.467
0.468
0.576
0.599
0614

0.467
0.468
0.559
0.572
0.601

0.467
0.468
0.484
0.515
0.594

0.467
0.468
0.307
0.304
0.545

0.453
0.455
0.579
0.569
0.579

0.453 0453
0.455 0.455
0.546 0.476
0.551 0.501
0.571 0.568

0.453
0.455
0.278
0.362
0.523

0.610
0.620
0.639
0.678
0.705

0.610
0.620
0.591
0.615
0.703

0.610
0.620
0.093
0.518
0.667

0.610
0.620
0.265
0.315
0.636

0.614
0.618
0.646
0.680
0.712

0.614
0.618
0.594
0.637
0.705

0.614
0.618
0.123
0.552
0.675

0.614
0.618
0.290
0.381
0.635

0.430
0.443
0.690
0.711
0.626

0.430
0.443
0.627
0.660
0.627

0.430
0.443
0.471
0.554
0.632

0.430
0.443
0.114
0.009
0.634

0.413
0.428
0.692
0.721
0.631

0.413
0.428
0.624
0.673
0.644

0.413
0.428
0.452
0.585
0.638

0.413
0.428
0.072
0.014
0.641

MRL*
MRL

0.514
0.598

0.491
0.594

0.464
0.575

0.435
0.528

0.461
0.576

0.453 0.421
0.564 0.560

0.400
0.510

0.724
0.709

0.719
0.691

0.680
0.678

0.640
0.640

0.727
0.709

0.724
0.694

0.682
0.678

0.639
0.635

0.625
0.639

0.581
0.633

0.384
0.641

0.334
0.613

0.623
0.647

0.587
0.635

0.408
0.647

0.359
0.618

DMCM

0.624

0.621

0.601

0.572

0.592

0.593 0.578

0.550

0.717

0.715

0.697

0.655

0.716

0.720

0.699

0.657

0.717

0.701

0.679

0.652

0.723

0.711

0.681

0.654

to ensure they achieve initial convergence. We assume that
the noise rate r is known. At each training epoch, we select
the ratio of (1 — r) samples with a higher probability of being
clean in Eq. (4) as clean samples. The remained data are
regarded as noisy samples. In practice, if the noisy rate r is
unknown in advance, it can be inferred by empirical analysis.

3.3. Comparison with the State-of-the-Arts

To validate the effectiveness of DMCM, we evaluate DMCM
against several cross-modal retrieval baselines, including gen-
eral methods (DCCA [23], DCCAE [27], SDML [28] and
DSCMR [29])) and methods proposed to combat noise labels
(MRL [15], LCN [16]). For fair comparisons, all baselines
utilize the same backbones as our DMCM for feature extrac-
tion. The mean average precision (mAP) of two cross-modal
retrieval tasks i.e., using image queries to retrieve text sam-
ples (I2T) and using text queries to retrieve image samples
(T2I) are reported in Table 2.

From the results, we can see that DMCM outperforms
baseline methods in most cases. Compared to MRL, DMCM
can obtain an absolute increase of 3.43 % and 3.33 % in av-
erage mAP on three datasets for 12T and T2I. As the ratio
of noise labels increases, retrieval performance slowly de-
creases. Moreover, the average mAP of our DMCM is 6.35%
higher than MRL on XMediaNet, indicating that our method
has excellent anti-interference ability even with more classes.
It also can be seen from Fig. 1 that MRL [15] tends to overfit
during training, while our method can produce stable output.

In addition, MRL has remarkable improvements to MRL*
on Wikipedia and XmediaNet datasets. Our DMCM only
slightly trails behind MRL* on Pascal-Sentence dataset when
noise rate is 0.2 and 0.4. This is because the token length of
CLIP’s text extractor is limited to 70, impeding the feature ex-
traction of long-length texts in this dataset. In summary, the
results have demonstrated the effectiveness of our method.

3.4. Ablation Study

Table 3 displays the ablation study results of DMCM. DMCM
(A = 1) means without mixing augmentation. We can see the

Table 3. Ablation study on Wikipedia.

12T

T2I

Method ‘ 02

0.4

0.6

08 | 02

0.4

0.6

0.8

DMCM w/o MAE | 0.605
DMCM w/o NGCE | 0.620

0.592
0.620

0.582
0.593

0.551 | 0.571
0.560 | 0.588

0.558
0.571

0.530
0.540

DMCM (A = 1) 0.615
DMCM | 0.624

0.607
0.621

0.587
0.601

0.549 | 0.583
0.572 | 0.592

0.567
0.578

0.532
0.550

DMCM is superior to its three variants, indicating that both
mixing components contribute to performance enhancement.

3.5. Parameter Analysis

Here, we analyze the impact of varied values of \. By set-
ting A as 1, DMCM degenerates to a model without the mix-
ing augmentation. When A\ = 0 it transforms to the version
that only with clean samples. As can be seen from Fig. 3,
a smaller )\ achieves better results, which validates that the
mixing augmentation with clean samples indeed works.

— 12T
T21
—— average

T

mAP

0.2 0.4 0.8 1.0

Fig. 3. mAP values under symmetric noise ratio 0.6 on
Wikipedia for the two search tasks with different A.

4. CONCLUSION

In this paper, we have proposed a novel DMCM for cross-
modal retrieval with noisy labels. Two mixing components
are designed to alleviate the impact of noisy labels. Extensive
experiments have indicated the efficacy of DMCM. The future
work shall include exploring more robust architectures and
handling more types of noises.



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

5. REFERENCES

Zhixiong Zeng and Wenji Mao, “A comprehensive empir-
ical study of vision-language pre-trained model for super-
vised cross-modal retrieval,” arXiv preprint arXiv:2201.02772,
2022.

Georgii Mikriukov, Mahdyar Ravanbakhsh, and Begiim Demir,
“Unsupervised contrastive hashing for cross-modal retrieval in
remote sensing,” in ICASSP. IEEE, 2022, pp. 4463-4467.

Benno Weck and Xavier Serra, “Data leakage in cross-modal
retrieval training: A case study,” in ICASSP. IEEE, 2023, pp.
1-5.

Fangming Zhong, Zhikui Chen, and Geyong Min, ‘“Deep dis-
crete cross-modal hashing for cross-media retrieval,” Pattern
Recognition, vol. 83, pp. 64-77, 2018.

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David
Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan Ma-
haraj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al.,
“A closer look at memorization in deep networks,” in ICML.
PMLR, 2017, pp. 233-242.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu,
Weihua Hu, Ivor Tsang, and Masashi Sugiyama, “Co-teaching:
Robust training of deep neural networks with extremely noisy
labels,” NeurlIPS, vol. 31, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,
and Oriol Vinyals, “Understanding deep learning (still) re-
quires rethinking generalization,” Communications of the
ACM, vol. 64, no. 3, pp. 107-115, 2021.

Bin Huang, Ping Zhang, and Chaoyang Xu, “Combining lay-
ered label correction and mixup supervised contrastive learn-
ing to learn noisy labels,” Information Sciences, vol. 642, pp.
119242, 2023.

Shikun Li, Xiaobo Xia, Shiming Ge, and Tongliang Liu,
“Selective-supervised contrastive learning with noisy labels,”
in CVPR, 2022, pp. 316-325.

Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard,
Ajmal Mian, and Mubarak Shah, “Unicon: Combating label
noise through uniform selection and contrastive learning,” in
CVPR, 2022, pp. 9676-9686.

Bo Han, Jiangchao Yao, Niu Gang, Mingyuan Zhou, Ivor
Tsang, Ya Zhang, and Masashi Sugiyama, “Masking: A new
perspective of noisy supervision,” in NeurIPS, 2018, pp. 5839—
5849.

Fuyan Ma, Bin Sun, and Shutao Li, “Transformer-augmented
network with online label correction for facial expression
recognition,” [EEE Transactions on Affective Computing,
2023.

Tianyuan Xu, Xueliang Liu, Zhen Huang, Dan Guo, Richang
Hong, and Meng Wang, “Early-learning regularized con-
trastive learning for cross-modal retrieval with noisy labels,”
in ACM Multimedia, 2022, pp. 629-637.

Junnan Li, Richard Socher, and Steven C.H. Hoi, “Dividemix:
Learning with noisy labels as semi-supervised learning,” in
ICLR, 2020.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, and Jie Lin,
“Learning cross-modal retrieval with noisy labels,” in CVPR,
2021, pp. 5403-5413.

Daiki Okamura, Ryosuke Harakawa, and Masahiro Iwahashi,
“Len: Label correction based on network prediction for cross-
modal retrieval with noisy labels,” in APSIPA ASC. IEEE,
2022, pp. 354-358.

Erkun Yang, Dongren Yao, Tongliang Liu, and Cheng Deng,
“Mutual quantization for cross-modal search with noisy la-
bels,” in CVPR, 2022, pp. 7551-7560.

Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano,
Sarah Erfani, and James Bailey, “Normalized loss functions
for deep learning with noisy labels,” in /CML. PMLR, 2020,
pp- 6543-6553.

Zhilu Zhang and Mert Sabuncu, “Generalized cross entropy
loss for training deep neural networks with noisy labels,” Ad-
vances in neural information processing systems, vol. 31,2018.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dolldr, “Focal loss for dense object detection,” in ICCV,
2017, pp. 2980-2988.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi,
and James Bailey, “Symmetric cross entropy for robust learn-
ing with noisy labels,” in CVPR, 2019, pp. 322-330.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Pa-
pernot, Avital Oliver, and Colin A Raffel, “Mixmatch: A holis-
tic approach to semi-supervised learning,” NeurlPS, vol. 32,
2019.

Nikhil Rasiwasia, Jose Costa Pereira, Emanuele Coviello,
Gabriel Doyle, Gert RG Lanckriet, Roger Levy, and Nuno
Vasconcelos, “A new approach to cross-modal multimedia re-
trieval,” in ACM Multimedia, 2010, pp. 251-260.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia
Hockenmaier, “Collecting image annotations using amazon’s
mechanical turk,” in NAACL, 2010, pp. 139-147.

Yuxin Peng, Jinwei Qi, and Yuxin Yuan, “Modality-specific
cross-modal similarity measurement with recurrent attention
network,” IEEE Trans, vol. 27, no. 11, pp. 5585-5599, 2018.

Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes,
“On deep multi-view representation learning,” in ICML.
PMLR, 2015, pp. 1083-1092.

Peng Hu, Liangli Zhen, Dezhong Peng, and Pei Liu, “Scalable
deep multimodal learning for cross-modal retrieval,” in ACM
SIGIR, 2019, pp. 635-644.

Liangli Zhen, Peng Hu, Xu Wang, and Dezhong Peng, “Deep
supervised cross-modal retrieval,” in CVPR, 2019, pp. 10394—
10403.



