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Abstract—Arbitrary-shaped text detection is an important
task in computer vision which has achieved great success
in text reading systems. However, there still exist several
challenges to be solved. For example, the regression-based text
detection methods always fail to fit highly-curved text contours
accurately. While the semantic segmentation-based methods
could fit any geometries accurately, most of them employ
single-size convolution kernels which ignore the diversity of
receptive fields. To tackle the above issues, we propose a
Watershed Segmentation Network (WSS-Net) which consists of
two stages. Firstly, the pixel-level predictions of masks including
text regions mask and text kernel regions mask are generated
by the semantic segmentation network, in which two strategies
i.e., deepening feature fusion and expanding receptive field are
designed. Thus, the generated region masks can fit the contours
of various-scale text instances better. Secondly, a rebuilding
module based on the watershed algorithm is proposed to
rebuild text instances according to the original image and two
region masks, which is a widely used post-processing technique.
Extensive experiments are carried out on Total-Text, CTW1500,
and MSRA-TD500 to evaluate the effectiveness of the proposed
WSS-Net. The results show that our WSS-Net achieves the
highest F-measure score against several state-of-the-arts on
three datasets.

Index Terms—Arbitrary-shaped text detection, Watershed
segmentation, Semantic segmentation

I. INTRODUCTION

Scene text detection is a challenging task in computer

vision, which has been widely used in many applications

such as visual place recognition [1], robot navigation [2],

and image understanding [3]. The text detecting models

aim at locating the text regions accurately in the natural

image, so as to improve the recognition accuracy of the

subsequent task. During text detecting, a candidate set

is usually proposed firstly for the text regions, and then

following a post-processing to rebuild the text instances.

Although grate success have been achieved in recent years,

scene text detection is still challenging due to the diverse

scales, arbitrary shapes, especially fitting highly-curved text

contours.

Recently, many scene text detectors have been proposed,

which can be roughly classified into two categories, i.e.,
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(2021JJ12SN44), and the Fundamental Research Funds for the Central
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segmentation-based text detectors and regression-based text

detectors. The segmentation-based text detectors can be seen

as bottom-up perspective methods. These methods classify

each image pixel, thus they can detect arbitrary-shaped texts

tightly. In addition, a post-processing is usually employed

to rebuild text instances which can avoid detecting multiple

adhesive text instances as one [4–7]. Regression-based text

detectors can be seen as top-down perspective methods.

These methods treat text instance in image as a whole object,

and directly estimate the bounding boxes as the detection

results [8–11]. Although huge progress has been achieved

in scene text detection, there are still several issues to be

solved. For example, the regression-based methods [8, 11]

detect arbitrary shape text instances by text boxes. Since the

boxes output from the models are quadrilateral, they cannot

fit contours of irregular-shaped text tightly, resulting in

poor detection performance. While the segmentation-based

methods can fit any geometries accurately, most of them

employ single-size convolution kernels which ignores the

diversity of receptive fields [12], leading to weak detecting

performance for highly-curved text instances.

Fig. 1: The overall pipeline of WSS-Net.

In this study we propose a novel Watershed Segmentation

Network (WSS-Net) as shown in Fig. 1. There are two stages

in WSS-Net, i.e., predicting text regions mask and text kernel

regions mask by semantic segmentation network (Fig. 1 (b)),

and rebuilding text instances in image from the predicted

regions masks (Fig. 1 (e)). Text regions mask (Fig. 1 (c))

indicates text instances regions, and text kernel regions mask

(Fig. 1 (d)) indicates central regions of text instances. In the

first stage we predict these two masks based on semantic

segmentation for accurately fitting the irregular contours of

text instances in image. Firstly, the semantic segmentation

network adopts Resnet-18 as the backbone network. Due

to the poor feature extraction ability of backbone network,
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enhanced feature pyramid network (FPN) is used to fuse

the output feature maps from backbone network. Inspired

by Feature Pyramid Enhancement Module (FPEM) [12], we

propose a Deepening Feature Fusion (DFF) module which

can fuse the output feature maps from the second to the

fifth convolution stages of backbone network. Different from

FPN, DFF module performs up-sampling fusion and down-

sampling fusion which can enhance the fusion of spatial

information and semantic information. The feature maps

generated from the backbone and DFF module are processed

only by 3x3 convolution kernels which causes monotonous

receptive field of model. In order to enrich receptive field

of model, we propose a expanding receptive field (ERF)

module which includes three different rates of dilation

convolution which are multi-size convolution kernels. In

addition, ERF module expands receptive field by processing

four levels feature maps from DFF module. Finally, the

semantic segmentation network generates prediction results

of text regions mask and text kernel regions mask.

In the second stage, we propose a Rebuilding Text In-

stances module (RTI) as post-processing to rebuild contours

of text instances in image with the help of original image

and two masks. Firstly, original image and two masks are

preprocessed with smoothing or noise reduction. Then, by

taking the text regions mask as the water storage area and

the text kernel regions as the starting water injection area,

the watershed algorithm [13] continuously inject water to

find the contours of different water areas and rebuild text

instances. To evaluate the performance of our model on

arbitrary-shaped text detection, extensive experiments are

carried out on Total-Text, CTW1500, and MSRA-TD500

datasets. Our method achieves a F-measure score of 84.56%,

81.68%, and 83.51% on four datasets, respectively.

The main contributions of this work are as follows:

• An Expanding Receptive Field (ERF) module is

proposed to enrich receptive field. ERF module with

multi-size convolution kernels can increase the model

robustness for detecting various scales text instances.

• A Rebuilding Text Instances (RTI) module is pro-

posed to rebuild text instances in post-processing. The

module treats regions masks as priori knowledge and

uses noise reduction, smoothing, and watershed algo-

rithm to rebuild contours of text instances.

II. RELATED WORKS

In recent years, a number of detectors have been proposed

for scene text detection task, which can be roughly divided

into regression-based text detection and segmentation-based

text detection.

A. Regression-based Text Detection

In regression-based text detection methods, they treat each

text instance as a whole and mark them with a text box. For

example, Xie et al. [9] mainly inspired by Mask R-CNN,

proposed a supervised pyramid context network (SPCNET)

to precisely locate text regions while suppressing false

positives. Huang et al. [14] proposed the pyramid attention

network as a new backbone network of Mask R-CNN which

can enhance the feature representation ability of Mask R-

CNN. Jiang et al. [10] proposed an intersection-over-union

overlap loss and a CMax-OMin strategy to select tighter pos-

itive samples for training. Besides, they trained a bounding

box regressor as post-processing to further improve model

performance. In addition, several works also propose free

anchor modules to detect text. Zhou et al. [11] utilized VGG-

16 and feature pyramid networks to extract features from

image. Then the redundant proposal text boxes are removed

by NMS operation. Liu et al. [15] employed parameterized

bezier-curve to predict the key point of oriented or curved

scene text and bezier align layer module to regular text

boxes.In [8], the Fourier Contour Embedding (FCE) is used

to fit closed shape of text instances and inverse fourier

transformation to reconstruct text contours in the image

spatial.

However, the regression-based text detection methods

cannot well fit the arbitrary-shaped text instances because

of the uncertain contour of text instances.

B. Segmentation-based Text Detection

In these methods, text instance is treated as a cluster

of pixels. These models not only predict whether each

pixel belongs to text instances, but also need to predict

which text instance that the pixel belongs to. Therefore, in

addition to generating the text regions mask, these models

also need auxiliary information to rebuild text instance by

post-processing. For example, Wang et al. [12] predicted text

regions mask and text kernel regions mask at first. To rebuild

text contours, they use similar vectors to expand text kernel

regions to text regions. Wang et al. [4] generated different

scale kernel regions masks for each text instance. Then the

model gradually expands different scale kernels to the text

instances with the complete shape. Hu et al. [5] predicted

score maps of text contour (TC), text center intensity (TCI),

and text kernel (TK) as intermediate results. The TC can

introduce text contour information, the TCI can help to learn

the accurate text segmentation, and the TK can generate the

complete shape of text instances. In [6], the authors utilized

U-net to generate heatmaps of candidate text regions. Then

they use the text fill algorithm to generate text contours. Liao

et al. [7] predicted text regions map and contour threshold

map and rebuild text instances by differentiable binarization.

Although segmentation-based text detection methods can

fit arbitrary-shaped text instances effectively, several models

such as [5] needs more complex feature extraction structures

and post-processing to get accurate text detection results.

III. METHODS

In this section, we first introduce the method of

segmentation-based scene text detector in this study, which

can predict binarization text regions mask and text kernel
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Fig. 2: The structure of semantic segmentation network. The feature maps from backbone network are enhanced by deepening

feature fusion module and expanding receptive field module. ⊕ means resizing and concatenating feature maps. The network

predicts text regions mask and text kernels regions mask to describe the text instances.

regions mask. Then we propose Rebuilding Text Instances

module, which can rebuild text instances by masks generated

before.

A. Semantic Segmentation Stage

The proposed model follows a segmentation-based

pipeline to detect arbitrary-shaped text instances as shown

in Fig. 2. Here, Resnet-18 is used as backbone network of

WSS-Net. There are 4 different levels output feature maps

(see Fig. 2) generated by the 2nd to 5th convolution stages

of backbone network.

The main difference of four backbone output feature maps

lies in that high-level convolution feature maps have more

semantic information but lack spatial information due to

their small size. In contrast, low-level convolution feature

maps are larger in size and rich in spatial information but

less in semantic information. Therefore, it is necessary to

combine spatial information and semantic information by

fusing low-level and high-level convolution feature maps.

Following FPEM [12], we also propose deepening feature

fusion (DFF) module (See Fig. 3) which is an improved

pyramid feature network. DFF module consists of two

phases, namely, up-scale fusion and down-scale fusion. In

order to match the input size of DFF module, four output

feature maps from backbone network are changed the chan-

nel number of each feature map to 128 by 1×1 convolution.

Then, the four feature maps are fed into the up-scale fusion

phase which upsamples high-level feature maps step by step

and fuses with low-level feature maps in turn. Next, the

combined feature maps are fed into down-scale fusion phase

which down samples low-level feature maps step by step and

fuses with high-level feature maps in turn.

In previous, the feature maps generated by DFF are

only processed by 3x3 convolution kernels which lacks the

diversity of detection receptive fields. In order to expand

receptive field and enhance the detection ability of detecting

various scales of text instances, we propose a expanding

receptive field (ERF) module (see Fig. 2 (d)). The ERF

has four independent parallel branches which have the same

structure. One branch of ERP module is shown in Fig. 4

Fig. 3: The details of DFF. ⊕ represents mixing feature maps

by resize, element-wise addition and convolution.

Fig. 4: One branch of ERP’s structure details. ⊕ means

resizing and concatenating feature maps.

in detail. The four branches have different input and output

image sizes (H and W in Fig. 4) to process four different

level of feature maps from DFF, respectively. Inspired by

ASPP [16], each branch performs three parallel dilation

convolution with different dilation rates of 6, 12, 18 on input

feature maps. At the same time, the input feature map is

convolved with 1x1 kernel after average pooling. At this

point, the branch produces five output feature maps in total:

three feature maps after dilation convolution, one feature

map after average pooling and one feature map after 1x1

convolution. We keep the output feature maps consistent

with input shape through resize and 1x1 convolution.

Then, through a two-layers full convolution network and

upsampling to generate two binarization masks as the output

of semantic segmentation stage. One is the text regions mask

(see Fig. 2 (e)), where the value of the pixel within the text

regions is 1 and the value of the pixel outside the text regions

is 0. The other is text kernel regions mask (see Fig. 2 (f)).

The value of the pixel within the text kernel regions is 1,
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and the value of the pixel outside the text kernel regions is

0. It is worth noting that the objective of the text regions

mask is to find the pixels where all the text in the image is

located. Differently, the objective of the text kernel regions

mask is finding the pixels of all text instances’ center region

in the image.

B. Rebuilding Text Instances
In this stage, Rebuilding Text Instances (RTI) module is

proposed to complete the detection text instances in image

(see Fig. 5) by using the original image (see Fig. 5 (a))

and two masks (see Fig. 5 (b) (c)) generated by semantic

segmentation network. In RTI module, three input images

must be preprocessed firstly. The original image is processed

by median filter to reduce the noise. The two masks are

smoothed by morphological operation to avoid RTI from

making a wrong segmentation in the rough region contour.

To avoid pixels in non-text regions affecting subsequent

processing, text regions mask is used to combine with

denoised original image by using hadamard products. The

processed original image is shown in Fig. 5 (d).
Then RTI generats the mark image (see Fig. 5 (e)) in

which different colors represent different label numbers. The

mark image provides prior knowledge for the subsequent wa-

tershed algorithm to avoid over-segmentation results. Pixels

in mark image are divided into three classes, i.e., uncertain

regions of text regions, non-text regions, and text kernel

regions. Uncertain regions are generated by text regions

mask minus text kernel regions mask. Non-text regions

include the pixels in the text regions mask with pixels’ values

of 0. The text kernel regions are the regions whose pixels’

value is 1 in the text kernel regions mask. In mark image,

uncertain segmented regions are marked with 0, the non-

text regions are marked with 1, and connected components

of text kernel regions are marked with different numbers

starting from 2.
Finally, processed original image and mark image are

input into the watershed segmentation algorithm. The tra-

ditional watershed algorithm based on gradient image treats

the region with high value as mountain peak and the region

with low value as valley. Each valley is treated as a water

injection location. With more water pouring into the image,

the water level will continue to rise, filling the valley and

potentially flooding the peak. Dams are built to prevent the

confluence of water from different water injection locations

and these dams are the contours formed after image segmen-

tation. In order to obtain the edge information of the image,

the gradient image in Eq. (1) is usually taken as the input

image,

G(x, y) = grad[f(x, y)] =
√

g2x + g2y

gx = f(x, y)− f(x− 1, y)

gy = f(x, y)− f(x, y − 1)

(1)

where f(x, y) represents the original image and grad[·] is
the gradient operation. Since the noise or tiny brightness

changes on image can easily leads to over-segmentation, it is

necessary to use priori knowledge to limit the segmentation

regions. Therefore, RTI module uses the watershed algorithm

based on mark image (see Fig. 5(e)) generated by two masks

(see Fig. 5(b)(c)). The result is shown in Fig. 5(f). The dotted

line in Fig. 5(f) generated by RTI is regarded as the contour

between two close text instances.

C. Loss Function
The objective of WSS-Net is given by Eq. (2):

L = Ltext + λLkernel (2)

where Ltext and Lkernel are the loss for the text region

detection branch and text kernel region detection branch,

respectively. λ is a parameter to balance Ltext and Lkernel.

Since both branches are considered equally important, λ is

set to 1 in all experiments.
we follow [4] and adopt dice loss which performs well

in tasks with extreme imbalance number of positive and

negative sample pixels to supervise the prediction result.

Ltext and Lkernel are giaven by Eq. (3) and Eq. (4),

respectively:

Ltext = 1−
2
∑
i

Ptext(i)Gtext(i)

∑
i

Ptext(i)2 +
∑
i

Gtext(i)2
(3)

Lkernel = 1−
2
∑
i

Pkernel(i)Gkernel(i)

∑
i

Pkernel(i)2 +
∑
i

Gkernel(i)2
(4)

where Ptext(i) and Pkernel(i) refer to the ith pixel in the

prediction masks for text regions and text kernel regions,

respectively. Similarly, Gtext(i) and Gkernel(i) refer to the

ith pixel in the ground-truth masks for text regions and text

kernel regions, respectively. These four masks are binary

images with the same size as the input image, in which text

pixels in Ptext and Gtext or text kernel pixels in Pkernel

and Gkernel are 1 and not-text pixels in Ptext and Gtext or

not-text kernel pixels in Pkernel and Gkernel are 0.
We also follow [4] and use polygon clipping algorithm

which computes the text kernel polygon contour points

shrinkage offset to the text instance contour points provided

by dataset. Then the offset is used to shrink every text

instance polygon and get the text kernel polygon contour

points.

IV. EXPERIMENTS

In this section, we first introduce the benchmark datasets

used in our experiments on scene text detection followed by

implementation details. In order to verify the effectiveness of

the modules in semantic segmentation, ablation studies are

also carried out. Finally, the results of the proposed model on

different benchmark datasets are compared against existing

methods.
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Fig. 5: The details of Rebuilding Text Instances module. The input original image and the two masks output by semantic

segmentation stage are used to rebuild the text instance area in image by preprocess and watershed method. � is hadamard

products. ⊕ means mixing two masks and generating label numbers on mark image.

A. Datasets

Synthtext [17] is created by mixing natural images with

artificially rendered text and contain 800,000 synthetic im-

ages. Following [5, 12], we use Synthtext as external dataset

to pre-train our model.

CTW1500 [18] is a challenging dataset for curve scene

text detection. It has 1000 training images and 500 testing

images. Every text instance in this dataset is labelled by 14

polygon contour points.

TotalText [19] is a dataset for arbitrary shape scene text

detection. This dataset consists of 1255 training images and

300 testing images.

MSRA-TD500[20] includes 300 training images and 200
test images with multi-direction text line instances. Since the

training set of MSRA-TD500 is rather small, we follow the

previous studies [4, 21] and add 400 images from HUST-

TR400 [22] to the training set.

B. Implementation Details

We use the ResNet pre-trained on ImageNet as our

backbone. All the networks are optimized by using Adam.

There are two ways to train model, i.e., training from scratch

or fine-tuning on pre-trained model. In this study, pre-trained

model is firstly trained on SynthText for 1 epoch with

learning rate of 0.001. We train model with batch size 16

on 1 GPU for 1000 epochs and early stop when F-score

not improve in 200 recent epochs. The shrink ratio of the

kernels is set to 0.7 for all datasets. Open operation with 3×3
rectangle box is adopted in morphological smooth. The same

evaluation method as [12] is used to evaluate in this study.

The evaluation metrics are precision, recall, and F-measure.

C. Ablation Studies

The ablation study experiments on TotalText dataset with-

out external data and results are shown in Table I.

The effectiveness of backbone. To evaluate the influence
of the backbone, the backbone is changed from Resnet18 to

TABLE I: The results of models with different structures on

TotalText.“P”, “R” and “F” represent the precision, recall,

and F-measure respectively.

No. Model structure
TotalText

P R F
1 Resnet50+DFF+ERF 87.99 80.76 84.22

2 Resnet18 86.64 79.86 83.12

3 Resnet18+DFF 85.97 80.83 83.32

4 Resnet18+ERF 87.46 79.85 83.48

5 Resnet18+DFF+ERF 88.69 80.8 84.56

Resnet50. According to results (Table I No.1 and No.5), F-

measure decreases by 0.34%, indicating that network depth

is not positively correlated with experimental results.

In order to demonstrate the effectiveness of DFF and ERF

modules, only the backbone is deployed in the semantic

segmentation stage and the experimental results are recorded

in Table I No.2. The model structure of Resnet18+DFF+ERF

(No.5) is the default model structure in this study. These

two groups of results are regarded as the baselines for

comparison.

The effectiveness of Resnet18+DFF. The ERF module is
removed from default model structure and the output feature

maps from DFF are regarded as the final output feature maps

of the semantic segmentation stage. The results are recorded

in Table I No.3 and the F-measure is 0.2% higher than F-

measure of model only deployed backbone (Table I No.2).

The effectiveness of Resnet18+ERF. Here, the DFF

module is removed from default model structure and the

output feature maps from backbone are regarded as the

input feature maps of ERF. the results show that F-measure

of Resnet18+ERF (Table I No.4) is 0.36% higher than F-

measure of model only deployed backbone (Table I No.2).

The effectiveness of Resnet18+DFF+ERF. From the

experimental results in Table I No.3, No.4 and No.5, we can

see that default model structure has the highest F-measure

with 1.24% higher than model without ERF and 1.08%
higher than model without DFF.
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Fig. 6: The visual detection results on TotalText, CTW1500, and MSRA-TD500.

According to the above experimental results, after adding

only the DFF or the ERF modules, the F-measure only im-

proves 0.2-0.3% compared to the original backbone. While,

the F-measure increases by 1-1.4% if both of them are

added. Therefore, it is necessary to deepen feature fusion

and expand receptive field at the same time in semantic

segmentation stage.

D. Comparisons with Other Methods

In this section, the results of fine-tuning experiment are

compared with the results of training from scratch firstly

to illustrate the influence of external data. We then compare

our model with previous methods on different datasets. Since

F-measure is a comprehensive score of precision and recall,

this study pays more attention to F-measure when comparing

results.

TABLE II: Finetuning result “P”, “R” and “F” represent the

precision, recall and F-measure respectively. “Ext.” indicates

external data.

Dataset Ext. P R F

TotalText
× 88.69 80.8 84.56√

89.12 80.22 84.43

MSRA-TD500
× 87.75 79.65 83.51√

85.34 83.02 84.17

CTW1500
× 86.32 77.51 81.68√

87.93 78.38 82.89

Table II shows the experimental results of the default

model structure of WSS-Net on three different datasets with

two different training methods. On TotalText, the precision,

recall, and F-measure with and without external data are

TABLE III: The results on TotalText. “P”, “R” and “F”

represent the precision, recall and F-measure respectively.

“Ext.” indicates external data.

Method Ext. Venue
TotalText

P R F
PAN[12] × 19ICCV 88 79.4 83.5

PSENet[4]
√

19CVPR 84 78 80.9

ABCNet[15]
√

20CVPR 87.9 81.3 84.5

TextRay[23]
√

20MM 83.5 77.9 80.6

STKM [24] × 21CVPR 86.32 78.36 82.15

PCR [21] × 21CVPR 86.4 81.5 83.9

Chang et al.[25]
√

21IROS 86.1 80.7 83.3

Xue et al. [26] × 22PR 86.1 82.6 84.4

Wang et al.-R18 [27] × 22IP 85.8 77 81.1

WSS-Net × - 88.69 80.8 84.56

all relatively close, and the gap is within 1%. On MSRA-

TD500, the precision with fine-tuning is 2.41% lower than

that without fine-tuning. But for recall, the model with fine-

tuning is 3.37% higher than that without fine-tuning. And

the F-measure with fine-tuning is only 0.66% higher than

that without fine-tuning. On CTW1500, the precision, recall

and F-measure with fine-tuning are 1.61, 0.87, and 1.21%
higher than those without fine-tuning respectively. Under

the same external data and training epoch, the F-measure

of the experimental model does not improve by 2-5% like

previous models [5, 12]. Therefore, only the results obtained

without fine-tuning by external data will be compared with

the results of other models. We also present an example of

visual detection results as shown in Fig. 6.

To evaluate the ability of WSS-Net for arbitrary shape

263

Authorized licensed use limited to: Dalian University of Technology. Downloaded on October 16,2023 at 16:58:15 UTC from IEEE Xplore.  Restrictions apply. 



text detection, we compare the results with others model on

TotalText by default model structure firstly. Visual detection

results on TotalText are shown in Fig. 6 (a). The short edge

of image is set to 640. As shown in Table III, the precision,

recall, and F-measure of our method are 88.69%, 80.8%
and 84.56% respectively. As can be seen, the precision

and F-measure of our method is the highest compared

to other state-of-the-arts. In particular, it is noted that F-

measure of our method without external data is 3.96%
higher than TextRay[23] which training with external data.

This demonstrates that our proposed method is effective in

arbitrary-shaped text detection.

TABLE IV: The results on CTW1500. “P”, “R” and “F”

represent the precision, recall and F-measure respectively.

“Ext.” indicates external data.

Method Ext. Venue
CTW1500

P R F
PAN[12] × 19ICCV 84.6 77.7 81

CSE [28] × 19CVPR 81.1 76 78.4

ABCNet[15]
√

20CVPR 84.4 78.5 81.4

TextRay [23]
√

20MM 82.8 80.4 81.6

PolarText[29]
√

21EUC 83.5 78.8 81

Chang et al.[25]
√

21IROS 83 76 79.3

STKM [24] × 21CVPR 85.08 78.23 81.51

Wang et al.-R18 [27] × 22IP 84.6 77.7 81

WSS-Net × - 86.32 77.51 81.68

CTW1500 is another dataset which can show ability of our

model for arbitrary shape text detection. As with TotalText,

the short edge of image is set to 640 for test. The visual

detection results on CTW1500 are shown in Fig. 6 (b). As

shown in Table IV, the precision, recall and F-measure of

our method are 86.32%, 77.51%, and 81.68% respectively.

The precision and F-measure of the proposed model is also

the highest. In addition, F-measure of our model without

external data is 0.68% higher than PolarText[29] which

training with external data.

TABLE V: The results on MSRA-TD500. “P”, “R” and “F”

represent the precision, recall and F-measure respectively.

“Ext.” indicates external data.

Method Ext. Venue
MSRA-TD500

P R F
CRAFT [30]

√
19CVPR 88.2 78.2 82.9

PAN[12] × 19ICCV 80.7 77.3 78.9

SAE [31]
√

19CVPR 84.2 81.7 82.9

Chen et al.[32] × 20ICPR 79.5 78.7 79.1

Mask-TextSpotter-v3[33]
√

20ECCV 90.7 77.5 83.5

Wang et al.[34] × 21IPCCC 87.6 74.4 80.5

SRM-Exp[35] × 21NC 84.23 80.76 82.46

JMNET[36] × 22NC 84.7 80 82.3

WSS-Net × - 87.75 79.65 83.51

To test the robustness of detecting long straight text in-

stance, we evaluate the proposed method on MSRA-TD500

dataset. The short edge of test image is set to 736. Visual

detection results on MSRA-TD500 are shown in Fig. 6 (c).

From Table V, we can see that our method achieves the

highest F-measure by 83.51% compared to the others. It

indicates that the proposed model is also robust for long

straight text detection.

V. CONCLUSION

In this paper, we have proposed a novel scene text detector

based on semantic segmentation and watershed segmenta-

tion. In the first stage, we deploy a deepening feature fusion

module and a expanding receptive field module after the

backbone network, which can benefit semantic segmentation.

In the second stage, the watershed segmentation module

uses the semantic segmentation results output by the first

stage as priori knowledge to rebuild text instances in image.

These two stages both improves the performance of the

proposed model for arbitrary-shaped text detector. Extensive

experiments on Total-Text, CTW1500, and MSRA-TD500

demonstrated the advantages when compared to previous

scene text detectors. For future work, we plan to consider

the text instance contours rebuilt by watershed segmentation

module to improve the recall further.
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